2023年人教版初二数学(上)代数知识点总结(参考知识)_初二数学上知识点总结.docx
-
资源ID:81925404
资源大小:14.82KB
全文页数:10页
- 资源格式: DOCX
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023年人教版初二数学(上)代数知识点总结(参考知识)_初二数学上知识点总结.docx
2023年人教版初二数学(上)代数知识点总结(参考知识)_初二数学上知识点总结 人教版初二数学(上)代数知识点总结(参考知识)由我整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“初二数学上知识点总结”。 初二数学(上)应知应会的知识点 因式分解 1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4因式分解的公式: (1)平方差公式: a2-b2=(a+ b)(a-b); (2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5因式分解的注意事项: (1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理; (6)因式分解的最后结果要求相同因式写成乘方的形式.6因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“ x2+px+q是完全平方式 Û 分式 Aæpöç÷=qè2ø2”.1分式:一般地,用A、B表示两个整式,A÷B就可以表示为B的形式,如果B A 中含有字母,式子B 叫做分式.ì整式有理式íî分式2有理式:整式与分式统称有理式;即.3对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义; (2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.4分式的基本性质与应用: (1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变; 即 -分子-分母 =-分子分母 =分子-分母 =- 分子分母 (3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.acac×=,bdbd7分式的乘除法法则: n n a b ¸ cd = adad ×=bcbc .aæaö ç÷=n.(n为正整数) b 8分式的乘方:èbø .9负整指数计算法则: (1)公式: a0=1(a0),a-n=a(a0);(2)正整指数的运算法则都可用于负整指数计算; æaöç÷ (3)公式:èbø -n n æbö=ç÷èaø n a -n-m,b = ba mn; (4)公式:(-1)-2=1,(-1)-3=-1.10分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.11最简公分母的确定:系数的最小公倍数·相同因式的最高次幂.a bc a±bc ab cd adbd bcbd ad±bcbd 12同分母与异分母的分式加减法法则: c ±=;±=±= .13含有字母系数的一元一次方程:在方程ax+b=0(a0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.14公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.数的开方 1平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.2平方根的性质: (1)正数的平方根是一对相反数;(2)0的平方根还是0;(3)负数没有平方根.3平方根的表示方法:a的平方根表示为也可以认为是一个数开二次方的运算.4算术平方根:正数a的正的平方根叫a的算术平方根,表示为平方根还是0.5三个重要非负数: a20 ,|a|0,0.6两个重要公式:(1)(a) a a 和- a .注意: a 可以看作是一个数,a .注意:0的算术 a 0.注意:非负数之和为0,说明它们都是 =a ;(a0) (2) (a³0)ìa =a=í î-a(a<0) .7立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为8立方根的性质: (1)正数的立方根是一个正数;(2)0的立方根还是0; a ;即把a开三次方.(3)负数的立方根是一个负数.9立方根的特性: -a=-a .10无理数:无限不循环小数叫做无理数.注意:p和开方开不尽的数是无理数.11实数:有理数和无理数统称实数.ìï ï有理数ï实数í ï ï无理数ïî12实数的分类:(1) ì正有理数 ïí0 ï负有理数î üï ý有限小数与无限循环小ïþ 数 ì正无理数üíý无限不循环小数î负无理数þ (2) .13数轴的性质:数轴上的点与实数一一对应.14无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:2=1.414 5=2.236.3=1.732 ì正实数 ï实数í0 ï负实数î 初二数学知识点总结 初二数学知识点总结1全等三角形的对应边、对应角相等2边角边公理有两边和它们的夹角对应相等的两个三角形全等3 角边角公理有两角和它们的夹边对应相等的两个三角形全等 4. 初二数学知识点总结 初二数学知识点总结总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,让我们来为自己写一份总结吧. 人教版初中数学代数部分知识点总结 一、实数的分类:ìïìì正整数üïï整数ïïïí零ïï有理数ïïï负整数ï有限小数或无限循环小实数ïíîý数íïïïì正分数ï ïï分数îíïî负分数ïþïïì正无理数ï无理数îíüî负无理数ý无限不循环小数þ1、有理数:任何一个有理数总可以写成pq(分数)的形. 初中数学数与代数知识点总结 初中数学数与代数知识点总结:数与代数知识点是初中学习数学时期的主要知识点之一,主要包括有理数、实数、代数式、整式、分式、一元一次方程、二元一次方程(组)、一元二次方程. 初二物理上知识点总结范文 初二物理上知识点总结范文总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,让我们好好写一份总结吧.