初中数学专题行程问题.pdf
初中(行程问题)专题 行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公式是:路程速度时间;速度路程时间;时间路程速度.行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。1.单人单程:例 1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从hkm/80提高到hkm/100,运行时间缩短了h3。甲,乙两城市间的路程是多少?【分析】如果设甲,乙两城市间的路程为xkm,那么列车在两城市间提速前的运行时间为hx80,提速后的运行时间为hx100.【等量关系式】提速前的运行时间提速后的运行时间=缩短的时间.【列出方程】310080 xx.例 2:某铁路桥长 1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了 1min,整列火车完全在桥上的时间共s40。求火车的速度和长度。【分析】如果设火车的速度为xsm/,火车的长度为ym,用线段表示大桥和火车的长度,根据题意可画出如下示意图:y 1000 60 x 1000 y 40 x 【等量关系式】火车min1行驶的路程=桥长+火车长;火车s40行驶的路程=桥长-火车长 【列出方程组】yxyx100040100060 举一反三:1小明家和学校相距km15。小明从家出发到学校,小明先步行到公共汽车站,步行的速度为 60min/m,再乘公共汽车到学校,发现比步行的时间缩短了min20,已知公共汽车的速度为hkm/40,求小明从家到学校用了多长时间。2根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的 2 小时 18 分钟缩短为 36 分钟,其速度每小时将提高km260.求提速后的火车速度。(精确到hkm/1)3徐州至上海的铁路里程为km650,从徐州乘”C“字头列车 A,”D”字头列车B 都可直达上海,已知A 车的速度为B 车的 2 倍,且行驶的时间比B 车少h5.2.求 A 车的速度及行驶时间。(同学们可能会认为这是双人行程问题,其实这题的类型可归结于例 1 的类型,把 B 车的速度看成是 A 提速后的速度,是不是也可看成单人单程的问题呀!)4 一列匀速前进的火车用 15 秒的时间通过了一个长 300 米的隧道(即从车头进入隧道到车尾离开隧道)。又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火车 2.5 秒,(光速sm/1038)1)求这列火车的长度 2)如果这列火车用 25 秒的时间通过了另一个隧道,求这个隧道的长 2.单人双程(等量关系式:来时的路程=回时的路程):例 1:某校组织学生乘汽车去自然保护区野营,先以hkm/60的速度走平路,后又以hkm/30的速度爬坡,共用了h5.6;返回时汽车以hkm/40的速度下坡,又以hkm/50的速度走平路,共用了h6.学校距自然保护区有多远。【分析】如果设学校距自然保护区为xkm,由题目条件:去时用了h5.6,则有些同学会认为总的速度为hkmx/5.6,然后用去时走平路的速度+去时爬坡的速度=总的速度,得出方程5.63060 x,这种解法是错误的,因为速度是不能相加的。不妨设平路的长度为xkm,坡路的长度为ykm,则去时走平路用了hx60,去时爬坡用了hy30,而去时总共用了h5.6,这时,时间是可以相加的;回来时汽车下坡用了hy40,回来时走平路用了50 x,而回来时总共用了h6.则学校到自然保护区的距离为kmyx)(。【等量关系式】去时走平路用的时间+去时爬坡用的时间=去时用的总时间 回来时走平路用的时间+回来时爬坡用的时间=回来时用的总时间【列出方程组】640505.63060yxyx 注:单人双程的行程问题抓住来时的路程=回时的路程、路程=速度时间,再把单人单程的行程问题练练熟就ok 了,题型跟单人单程的题型差不多,把上面的例题弄懂,这里就不多做练习了。3.双人行程:()单块应用:只单个应用同向而行或背向而行或相向而行或追击问题。1)同时同地同向而行:A,B 两事物同时同地沿同一个方向行驶 例:甲车的速度为hkm/60,乙车的速度为hkm/80,两车同时同地出发,同向而行。经过多少时间两车相距km280。【分析】如果设经过xh后两车相距km280,则甲走的路程为xkm60,乙走的路程为xkm80,根据题意可画出如下示意图:80 x km 乙 甲 60 x km 280km【等量关系式】甲车行驶的距离+280=乙车行驶的距离【列出方程】xx28028060 2)同时同地背向而行:A,B 两事物同时同地沿相反方向行驶 例:甲车的速度为hkm/60,乙车的速度为hkm/80,两车同时同地出发,背向而行。经过多少时间两车相距km280。【分析】如果设经过xh后两车相距km280,则甲走的路程为xkm60,乙走的路程为xkm80,根据题意可画出如下示意图:甲 乙 60 x km 80 x km 280 km【等量关系式】甲车行驶的距离+乙车行驶的距离=280【列出方程】2808060 xx 3)同时相向而行(相遇问题):例:甲,乙两人在相距km10的 A,B 两地相向而行,乙的速度是甲的速度的 2倍,两人同时处发h5.1后相遇,求甲,乙两人的速度。【分析】如果设甲的速度为hxkm/,则乙的速度为hxkm/2,甲走过的路程为x5.1km,乙走过的路程为x25.1km,根据题意可画出如下示意图:甲 1.5x km 1.52x km 乙 A B 10 km 280 km【等量关系式】甲车行驶的距离+乙车行驶的距离=10【列出方程】1025.15.1xx 4)追及问题:例:一对学生从学校步行去博物馆,他们以hkm/5的速度行进min24后,一名教师骑自行车以hkm/15的速度按原路追赶学生队伍。这名教师从出发到途中与学生队伍会合共用了多少时间?【分析】如果设这名教师从出发到途中与学生队伍会合共用了xh,则教师走过的路程为x15km,学生走过的路程为教师出发前走过的路程加上教师出发后走过的路程,而学生在教师出发前走过的路程为km60245,学生在教师出发后走过的路程为x5km,又由于教师走过的路程等于学生走过的路程。根据题意可画出如下示意图:学生 km60245 5x km 教师 15x km 【等量关系式】教师走过的路程=学生在教师出发前走过的路程+学生在教师出发后走过的路程【列出方程】xx56024515 5)不同时同地同向而行(与追击问题相似):例:甲,乙两人都从 A 地出发到 B 地,甲出发h1后乙才从 A 地出发,乙出发h3后甲,乙两人同时到达 B 地,已知乙的速度为hkm/50,问,甲的速度为多少?【分析】如果设甲的速度为xhkm/,则乙出发前甲走过的路程为xkm,乙出发后甲走过的路程为x3 km,甲走过的路程等于乙出发前甲走过的路程加上乙出发后甲走过的路程,而乙走过的路程为km350,甲走过的路程等于乙走过的路程。根据题意可画出如下示意图:甲 x km 3x km 乙 503 km 【等量关系式】乙走过的路程=乙出发前甲走过的路程加上乙出发后甲走过的路程【列出方程】xx3350 6)不同时相向而行 例:甲,乙两站相距km448,一列慢车从甲站出发,速度为hkm/60;一列快车从乙站出发,速度为hkm/100。两车相向而行,慢车先出发min32,快车开出后多少时间两车相遇?【分析】如果设快车开出后xh两车相遇,则慢车走过的路程为60326060 xkm,快车走过的路程为100 xkm。根据题意可画出如下示意图:慢车603260 60 x 100 x 快车 448km【等量关系式】总路程=快车出发前慢车走过的路程+快车出发后慢车走过的路程+快车走过的路程【列出方程】xx10060603260448 注:涉及此类问题的还有同时不同地同向而行、不同时不同地背向而行、不同时不同地同向而行、不同时不同地背向而行,与上面解法类似,只要画出示意图问题就会迎刃而解,就不再一一给出解答了,此类问题会在后面练习中给出习题。()结合应用:把同向而行、背向而行、相向而行、追击问题两两结合起来应用。1)相向而行+背向而行 例:A,B 两地相距km36,小明从 A 地骑自行车到 B 地,小丽从 B 地骑自行车到 A 地,两人同时出发相向而行,经过h1后两人相遇;再过h5.0,小明余下的路程是小丽余下的路程的 2 倍。小明和小丽骑车的速度各是多少?【分析】如果设小明骑车的速度为x,小丽骑车的速度为y,相遇前小明走过的路程为x,小丽走过的路程为y;相遇后两人背向而行,小明走过的路程为x5.0,小丽走过的路程为y5.0。根据题意可画出如下示意图:小明 小丽 相遇前 x y A B 36km x-0.5y 0.5y 0.5x y-0.5x 小丽 小明【等量关系式】相遇前小明走过的路程+相遇前小丽走过的路程=总路程 相遇后小明余下的路程=2相遇后小丽余下的路程【列出方程组】)5.0(25.036yxxyyx 2)同向而行+相向而行 例:一个自行车队进行训练,训练时所有队员都以35 千米/时的速度前进,突然,1 号队员以 45 千米/时的速度独自行进,行进10 千米后掉转车头,仍以45 千米/时的速度往回骑,直到与其他队员会合。1 号队员从离队开始到与其他队员重新会合,经过了多长时间?【分析】由题意“1 号队员以 45 千米/时的速度独自行进,行进 10 千米后掉转车头”可知 1 号队员从离队到调转车头前的时间为h4510,不妨设 1 号队员从调转车头到与其他队员重新回合的时间为xh。根据题意可画出如下示意图:所有队员 1 号队员 451035 35x 45x 10km【等量关系式】1 号队员从离队到调转车头这段时间所有队员走的路程+1 号队员从调转车头到与其他队员重新回合这段时间内所有队员走的路程+1 号队员从调转车头到与其他队员重新回合这段时间内 1 号队员走的路程=10。【列出方程】104535451035xx 注:涉及此类问题的还有同向而行+相背而行、追及+同向而行、追及+相背而行、追及+相向而行,只要把它们分成单个类型,按照题意一步一步求解,这里就不一一举例了,此类问题会在后面练习中给出习题。举一反三:1.甲,乙两人从楼底爬楼梯到楼顶,甲平均每分钟爬楼梯 40 级,乙平均每分钟爬楼梯 50 级,甲先出发min2,结果两人同时到达楼顶。问从楼底到楼顶共有楼梯多少级?2 甲,乙两人在相距m100的两地相背而行,min30后甲,乙两人相距km4,已知甲的速度为min/60m,求乙的速度。3.小彬和小明每天早晨坚持跑步,小彬每秒跑 4 米,小明每秒跑 6 米,(1如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小明站在百米跑道的起点处,小彬站在他前面 10 米处,两人同时同向起跑,几秒后小明能追上小彬。4.一队学生去校外进行军事野营训练。他们以hkm/5的速度行进,走了min18的时候,学校要将一个紧急通知传给队长。通讯员从学校出发,骑自行车以hkm/14的速度按原路追上去,队长出发后经过多少时间接到通知?5.两辆汽车同时从 A 地出发,沿一条公路开往 B 地。甲车比乙车每小时多行 8 千米,甲车比乙车早 40 分钟到达途中的 C 地,当乙车到达 C 地时,甲车正好到达 B 地。已知 C 至 B 地的路程是 40 千米,求乙车每小时行多少 km?6.A,B 两地相距km450,甲,乙两车分别从 A,B 两地同时出发,相向而行。已知甲车速度为hkm/120,乙车速度为hkm/80,经过多少小时两车相距km50。7 甲乙两车同时从 A 地出发,在相距 900 千米的 AB 两地间不断往返行驶。已知甲车的速度是每小时 25 千米,乙车的速度是每小时 20 千米。请问:(1)甲车第一次从后面追上乙车是在出发后多长时间?(2)甲车在第一次从后面追上乙车之后又经过多长时间第二次从后面追上乙车?(3)甲乙两车第二次迎面相遇是在出发后多长时间?4.行程问题中的工程问题:乍一看,题目中就时间已知,速度、路程都未知,此类问题同学们做起来觉得无从下手。其实只要把路程看做单位“1”(至于为什么,结合以下例题讲解),这就相当于把行程问题转化为工程问题。例:甲开汽车从 A 地到 B 地需要h6,乙开汽车从 A 地到 B 地需要h4,如果甲,乙两人分别从 A,B 两地出发,相向而行,经过多少小时后两车相遇。【分析】题目中就时间已知,速度、路程都未知,有些同学想如果知道 A 与B 的距离,就可以得出 A 与 B 的速度,那么问题就迎刃而解了,可是路程未知呀!是不是路程无论取什么值,都经过相同的时间两车相遇呢?为此,我们不妨设 A 与 B 的距离为a,经过xh后两车相遇。我们可以立马得出关系式:axaxa46,可以把两边的a消去,得到方程146xx,立马得出512x。说明路程无论取什么值,都经过相同的时间两车相遇。遇到类似问题,我们往往把路程看做单位“1”。举一反三:1.甲从 A 地到 B 地需要h3,乙从 A 地到 B 地需要h4,甲,乙两人同时从 A地出发,甲先到达 B 地后掉头向 A 方向行驶,问,甲,乙两人从 A 地同时出发到两人相遇需要多长时间?2.甲开汽车从 A 地到 B 地需h2,乙骑摩托车从 B 地到 A 地需h3。如果乙骑摩托车从 B 地出发往 A 地,h1后甲开汽车从 A 地往 B 地,那么甲出发多少时间与乙相遇?5.环形跑道问题:环形跑道问题也是形成问题的一种,环形跑道问题就是闭路线上的追击问题。在环形问题中,若两人所走同时同地出发,同向而行,当第一次相遇时,两人所走路程差为一周长;相向而行,第一次相遇时,两人所走路程和为一周长。例 1:运动场跑道周长m400,小红跑步的速度是爷爷的35倍,他们从同一地点沿跑道的同一方向同时出发,min5后小红第一次追上了爷爷。你知道他们的跑步速度吗?那是不是再过min5两人第二次相遇呢?如果不是,请说明理由;如果是,用方程式表示。【分析】不妨设爷爷的跑步速度为xmin/m,则小红的跑步速度为x35min/m【等量关系式】小红跑的路程爷爷跑的路程=400m【列出方程】4005355xx 注:再过min5两人第二次相遇,用上面那个方程式就可以表示出来。例 2:甲,乙两车分别以均匀的速度在周长为m600的圆形轨道上运动。甲车的速度较快,当两车反向运动时,每s15相遇一次;当两车同向运动时,每min1相遇一次,求两车的速度。【分析】设甲,乙两车的速度分别为xsm/和ysm/。【等量关系式】同向而行甲所走的路程-同向而行乙所走的路程=一周长 反向而行甲所走的路程+同向而行乙所走的路程=一周长【列出方程组】60060606001515yxyx 举一反三:1.甲,乙两人在周长m400长的环形跑道上竞走,已知乙的速度是min/80m,甲的速度是乙的 1.25 倍,乙在甲前m100。问多少分钟后,甲可以追上乙?2.甲,乙两人都以不变的速度在环形路上跑步,相向而行,每隔min2相遇一次;同向而行,每隔min6相遇一次。已知甲比乙跑得快,求甲,乙两人每分钟个跑几圈?6.水流问题 一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它的特点主要是考虑水速在逆行和顺行中的不同作用。基本概念和公式有:船速:船在静水中航行的速度 水速:水流动的速度 顺水速度:船顺流航行的速度 逆水速度:船逆流航行的速度 顺速=船速水速 逆速=船速水速 船行速度=(顺水速度+逆流速度)2 流水速度=(顺流速度逆流速度)2 路程=顺流速度 顺流航行所需时间 路程=逆流速度逆流航行所需时间 例 1:某船在km80的航道上航行,顺流航行需h6.1,逆流航行需h2。求船在静水中航行的速度和水流的速度。【分析】设船在静水中航行的速度和水流的速度分别为x和y,顺流的速度为hkm/6.180,逆流的速度为hkm/280,再利用上面的公式。【等量关系式】顺速=船速水速 逆速=船速水速【列出方程】yxyx2806.180 例 2:甲,乙两艘货船,甲船在前 30 千米处逆水而行,乙船在后追赶。甲乙两人的静水速度分别是36 千米/小时和42千米/小时,水流速度是4 千米/小时,求甲船行多少时间被乙船追上?【分析】已知甲乙两人的静水速度和水流速度,可以分别求出甲乙两人的逆水速度,分别为 32 千米/小时和 38 千米/小时。不妨设甲船行x小时后被乙船追上,再根据公式路程=逆流速度逆流航行所需时间,则甲行驶的路程为x32千米,乙行驶的路程为x38千米,这样就可以把此问题转化为追击问题。【等量关系式】甲行驶的路程+30=乙行驶的路程【列出方程】xx383032