欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    英才中学初高中数学衔接教材.pdf

    • 资源ID:82105907       资源大小:2.10MB        全文页数:49页
    • 资源格式: PDF        下载积分:19.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要19.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    英才中学初高中数学衔接教材.pdf

    初高中数学衔接教材 第一部分,如何做好高、初中数学的衔接 第一讲 如何学好高中数学 初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。下面就对造成这种现象的一些原因加以分析、总结。希望同学们认真吸取前人的经验教训,搞好自己的数学学习。一 高中数学与初中数学特点的变化 1 数学语言在抽象程度上突变。不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。确实,初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。2 思维方法向理性层次跃迁。高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。因此,初中学习中习惯于这种机械的、便于操作的定势方式。高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。当然,能力的发展是渐进的,不是一朝一夕的。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。3 知识内容的整体数量剧增。高中数学在知识内容的“量”上急剧增加了。例如:高一代数第一章就有基本概念52个,数学符号28个;立体几何第一章有基本概念37个,基本公理、定理和推论21个;两者合在一起仅基本概念就达89个之多,并集中在高一第一学期学习,形成了概念密集的学习阶段。加之高中一年级第一学期只有七十多课时,辅助练习、消化的课时相应地减少了。使得数学课时吃紧,因而教学进度一般较快,从而增加了教与学的难度。这样,不可避免地造成学生不适应高中数学学习,而影响成绩的提高。这就要求:第一,要做好课后的复习工作,记牢大量的知识。第二,要理解掌握好新旧知识的内在联系,使新知识顺利地同化于原有知识结构之中。第三,因知识教学多以零星积累的方式进行的,当知识信息量过大时,其记忆效果不会很好,因此要学会对知识结构进行梳理,形成板块结构,实行“整体集装”。如表格化,使知识结构一目了然;类化,由一例到一类,由一类到多类,由多类到统一;使几类问题同构于同一知识方法。第四,要多做总结、归类,建立主体的知识结构网络。二 不良的学习状态 1 学习习惯因依赖心理而滞后。初中生在学习上的依赖心理是很明显的。第一,为提高分数,初中数学教师将各种题型都一一罗列,学生依赖于教师为其提供套用的“模子”;第二,家长望子成龙心切,回家后辅导也是常事。升入高中后,教师的教学方法变了,套用的“模子”没有了,家长辅导的能力也跟不上了。许多同学进入高中后,还象初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。2 思想松懈。有些同学把初中的那一套思想移植到高中来。他们认为自已在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,有的还是重点中学里的重点班,因而认为读高中也不过如此。高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。存有这种思想的同学是大错特错的。有多少同学就是因为高一、二不努力学习,临近高考了,发现自己缺漏了很多知识再弥补后悔晚矣。3 学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆;课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。还有些同学晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。4 不重视基础。一些“自我感觉良好”的同学,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。5 进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数值的求法、实根分布与参变量的讨论、,三角公式的变形与灵活运用、空间概念的形成、排列组合应用题及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求。三 科学地进行学习 高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩。1 培养良好的学习习惯。反复使用的方法将变成人们的习惯。什么是良好的学习习惯?良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。(1)制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。(2)课前自学是上好新课、取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。自学不能走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。(3)上课是理解和掌握基础知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。(4)及时复习是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对意志毅力的考验,通过运用使对所学知识由“会”到“熟”。(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的知识拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,使所学到的知识由“熟”到“活”。(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。2 循序渐进,防止急躁。由于同学们年龄较小,阅历有限,为数不少的同学容易急躁。有的同学贪多求快,囫囵吞枣;有的同学想靠几天“冲刺”一蹴而就;有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。同学们要知道,学习是一个长期地巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。为什么高中要学三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。3 注意研究学科特点,寻找最佳学习方法。数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。第二部分,现有初高中数学知识存在以下“脱节”1立方和与差的公式初中已删去不讲,而高中的运算还在用。2因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。3二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。4初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。5二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。6图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。7含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。8几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。第三部分 初中数学与高中数学衔接紧密的知识点 1 绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他本身,负数的绝对值是他的相反数,0 的绝对值是 0,即 两个负数比较大小,绝对值大的反而小 两个绝对值不等式:;或 2 乘法公式:平方差公式:立方差公式:立方和公式:完全平方公式:,完全立方公式:3 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法,运用公式法,分组分解法,十字相乘法。4 一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是 1,这样的方程叫一元一次方程。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为 1。关于方程解的讨论 当时,方程有唯一解;当,时,方程无解 当,时,方程有无数解;此时任一实数都是方程的解。5 二元一次方程组:(1)两个二元一次方程组成的方程组叫做二元一次方程组。(2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。(3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。(4)解二元一次方程组的方法:代入消元法,加减消元法。6 不等式与不等式组(1)不等式:用符不等号(、)连接的式子叫不等式。不等式的两边都加上或减去同一个整式,不等号的方向不变。不等式的两边都乘以或者除以一个正数,不等号方向不变。不等式的两边都乘以或除以同一个负数,不等号方向相反。(2)不等式的解集:能使不等式成立的未知数的值,叫做不等式的解。一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式解集的过程叫做解不等式。(3)一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是 1 的不等式叫一元一次不等式。(4)一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。7 一元二次方程:方程有两个实数根 方程有两根同号 方程有两根异号 韦达定理及应用:,8 函数(1)变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。(2)一次函数:若两个变量,间的关系式可以表示成(为常数,不等于 0)的形式,则称 是 的一次函数。当=0 时,称 是 的正比例函数。(3)一次函数的图象及性质 把一个函数的自变量 与对应的因变量 的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。正比例函数=的图象是经过原点的一条直线。在一次函数中,当0,O,则经 2、3、4 象限;当0,0 时,则经 1、2、4 象限;当0,0 时,则经 1、3、4 象限;当0,0时,则经 1、2、3 象限。当0 时,的值随 值的增大而增大,当0 时,的值随 值的增大而减少。(4)二次函数:一般式:(),对称轴是 顶点是;顶点式:(),对称轴是顶点是;交点式:(),其中(),()是抛物线与 x轴的交点(5)二次函数的性质 函数的图象关于直线对称。时,在对称轴()左侧,值随 值的增大而减少;在对称轴()右侧;的值随 值的增大而增大。当时,取得最小值 时,在对称轴()左侧,值随 值的增大而增大;在对称轴()右侧;的值随 值的增大而减少。当时,取得最大值 9 图形的对称(1)轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。(2)中心对称图形:在平面内,一个图形绕某个点旋转 180 度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。中心对称图形上的每一对对应点所连成的线段都被对称中心平分。10 平面直角坐标系(1)在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做 轴或横轴,铅直的数轴叫做 轴或纵轴,轴与 轴统称坐标轴,他们的公共原点 称为直角坐标系的原点。(2)平面直角坐标系内的对称点:设,是直角坐标系内的两点,若和关于 轴对称,则有。若和关于 轴对称,则有。若和关于原点对称,则有。若和关于直线对称,则有。若和关于直线对称,则有或。11 统计与概率:(1)科学记数法:一个大于 10 的数可以表示成的形式,其中 大于等于 1 小于 10,是正整数。(2)扇形统计图:用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与 360 度的比。(3)各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。(5)平均数:对于个数,我们把()叫做这个个数的算术平均数,记为。(6)加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。(7)中位数与众数:N 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。一组数据中出现次数最大的那个数据叫做这个组数据的众数。优劣比较:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。(8)调查:为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。(9)频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。(10)数据的波动:极差是指一组数据中最大数据与最小数据的差。方差是各个数据与平均数之差的平方和的平均数。标准差就是方差的算术平方根。一般来说,一组数据的极差,方差,或标准差越小,这组数据就越稳定。(11)事件的可能性:有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。一般来说,不确定事件发生的可能性是有大小的。(12)概率:人们通常用 1(或 100%)来表示必然事件发生的可能性,用0 来表示不可能事件发生的可能性。游戏对双方公平是指双方获胜的可能性相同。必然事件发生的概率为 1,记作(必然事件);不可能事件发生的概率为,记作(不可能事件);如果 A 为不确定事件,那么 1.1 数与式的运算 1.1绝对值 绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零即 绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离 两个数的差的绝对值的几何意义:表示在数轴上,数 和数 之间的距离 例 1 解不等式:4 解法一:由,得;由,得;若,不等式可变为,即4,解得 x0,又 x1,x0;若,不等式可变为,即 14,不存在满足条件的 x;若,不等式可变为,即4,解得 x4 又 x3,x4 综上所述,原不等式的解为 x0,或 x4 解法二:如图 111,表示 x 轴上坐标为 x 的点 P 到坐标为 1 的点 A 之间的距离|PA|,即|PA|x1|;|x3|表示 x 轴上点 P 到坐标为 2的点 B 之间的距离|PB|,即|PB|x3|所以,不等式4 的几何意义即为|PA|PB|4 由|AB|2,可知 点 P 在点 C(坐标为 0)的左侧、或点 P 在点 D(坐标为 4)的右侧 1 3 A B x 0 4 C D x P|x1|x3|图 111 x0,或 x4 1填空:(1)若,则 x=_;若,则 x=_.(2)如果,且,则 b_;若,则 c_.2选择题:下列叙述正确的是 ()(A)若,则 (B)若,则 (C)若,则 (D)若,则 3化简:|x5|2x13|(x5)4若,求的值 5.解方程x-2+2x+1=7 6.解方程 7.解不等式 8.解不等式 练 习 9 利用绝对值的几何意义写出不等式的解 1 2 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 ;(2)完全平方公式 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 ;(2)立方差公式 ;(3)三数和平方公式 ;(4)两数和立方公式 ;(5)两数差立方公式 对上面列出的五个公式,有兴趣的同学可以自己去证明 例 1 计算:(1)(2)(3)(4)解:(1)原式=(2)原式=(3)原式=(4)原式=说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构 (2)为了更好地使用乘法公式,记住 1、2、3、4、20 的平方数和 1、2、3、4、10 的立方数,是非常有好处的 例 2 计算:解法一:原式=解法二:原式=例 3 计算:解:原式=说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列 例 4 已知,求的值 解:例 5 已知,求的值 解:原式=说明:本题若先从方程中解出 的值后,再代入代数式求值,则计算较烦琐 本题是根据条件式与求值式的联系,用整体代换的方法计算,简化了计算请注意整体代换法本题的解法,体现了“正难则反”的解题策略,根据题求利用题知,是明智之举 例 6 已知,求的值 解:原式=,把代入得原式=说明:注意字母的整体代换技巧的应用 1填空:(1)();(2);(3)2选择题:练 习(1)若是 一 个 完 全 平 方 式,则等 于 ()(A)(B)(C)(D)(2)不 论,为 何 实 数,的 值 ()(A)总是正数 (B)总是负数 (C)可以是零 (D)可以是正数也可以是负数 3计算(1)(3x+2y)(9x2-6xy+4y2)=(2)(2x-3)(4x2+6xy+9)=(3)=(4)(a+b)(a2-ab+b2)(a-b)(a2+ab+b2)=4利用立方和、立方差公式进行因式分解 (1)27m3-n3=(2)27m3-n3=(3)x3-125=(4)m6-n6=1.1.3二次根式 1,一般地,形如的代数式叫做二次根式 2,二次根式性质:(1)(2)(3)(4)3,根号下含有字母、且不能够开得尽方的式子称为无理式.例如,等是无理式,而,等是有理式 4二次根式的意义 5,最简二次根式:1被开方数的因数是整数,因式是整式2被开方数中不含能开得尽方的因数或因式.满足以上两个条件的二次根式,叫做最简二次根式。例1 将下列式子化为最简二次根式:(1);(2);(3)解:(1);(2);(3)例 2 化简下列各式:(1)(2)解:(1)原式=*(2)原式=说明:请注意性质的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论 例 3 计算(没有特殊说明,本节中出现的字母均为正数):(1)(2)(3)(4)解:(1)=(2)原式=(3)原式=(4)原式=说明:(1)二次根式的化简结果应满足:被开方数的因数是整数,因式是整式;被开方数不含能开得尽方的因数或因式(2)二次根式的化简常见类型有下列两种:被开方数是整数或整式化简时,先将它分解因数或因式,然后把开得尽方的因数或因式开出来;分母中有根式(如)或被开方数有分母(如)这时可将其化为形式(如可化为),转化为“分母中有根式”的情况化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简(如化为,其中与叫做互为有理化因式)有理化因式和分母有理化 有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式叫做有理化因式。如与;与互为有理化因式。分母有理化:在分母含有根式的式子里,把分母(子)中的根号化去,叫做分母(子)有理化为了进行分母(子)有理化,需要引入有理化因式的概念两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,与,与,等等 一般地,与,与,与互为有理化因式 分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程 在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式 例 4 计算:解法一:解法二:例 5 试比较下列各组数的大小:(1)和;(2)和.解:(1),又,(2)又 42 2,64 62 2,.例 6 化简:解:例 7 化简:(1);(2)解:(1)原式 (2)原式=,所以,原式 例 8 已知,求的值 解:,说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量 1二次根式成立的条件是()A B C D 是任意实数 2若,则的值是()A B C D 3.填空:(1)_ _;(2)若,则 的取值范围是_ _ _;(3)_ _;(4)若,则_ _ 4.选择题:等式成立的条件是 ()(A)(B)(C)(D)5.若,求的值 6.比较大小:2 3 5 4(填“”,或“”)7.化简(下列 的取值范围均使根式有意义):(1)(2)练 习 (3)(4)8设,求代数式的值 9设,求的值 1.1.分式 1分式的意义 形如的式子,若 B 中含有字母,且,则称为分式当 M0 时,分式具有下列性质:;上述性质被称为分式的基本性质 2繁分式 像,这样,分子或分母中又含有分式的分式叫做繁分式 例 1 若,求常数的值 解:,解得 例 2(1)试证:(其中 n 是正整数);(2)计算:;(3)证明:对任意大于 1 的正整数 n,有(1)证明:,(其中 n 是正整数)成立(2)解:由(1)可知 (3)证明:,又 n2,且 n 是正整数,1n1 一定为正数,12 例 3 设,且 e1,2c25ac2a20,求 e 的值 解:在 2c25ac2a20 两边同除以 a2,得 2e25e20,(2e1)(e2)0,e12 1,舍去;或 e2 e2 1填空题:对任意的正整数 n,();2若,则 ()练 习 (A)(B)(C)(D)3正数满足,求的值 4计算 12 分解因式 因式分解 因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形在分式运算、解方程及各种恒等变形中起着重要的作用是一种重要的基本技能 因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等 1、公式法【例 1】用立方和或立方差公式分解下列各多项式:(1)(2)分析:(1)中,(2)中 解:(1)(2)说明:(1)在运用立方和(差)公式分解因式时,经常要逆用幂的运算法则,如,这里逆用了法则;(2)在运用立方和(差)公式分解因式时,一定要看准因式中各项的符号 【例 2】分解因式:(1)(2)分析:(1)中应先提取公因式再进一步分解;(2)中提取公因式后,括号内出现,可看着是或 解:(1)(2)2、分组分解法 从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式而对于四项以上的多项式,如既没有公式可用,也没有公因式可以提取 因此,可以先将多项式分组处理 这种利用分组来因式分解的方法叫做分组分解法分组分解法的关键在于如何分组(1)分组后能提取公因式 【例 3】把分解因式 分析:把多项式的四项按前两项与后两项分成两组,并使两组的项按 的降幂排列,然后从两组分别提出公因式与,这时另一个因式正好都是,这样可以继续提取公因式 解:说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法本题也可以将一、四项为一组,二、三项为一组,同学不妨一试 【例 4】把分解因式 分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式 解:说明:由例 3、例 4 可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律由此可以看出运算律在因式分解中所起的作用 (2)分组后能直接运用公式 【例 5】把分解因式 分析:把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其中一个因式是;把第三、四项作为另一组,在提出公因式 后,另一个因式也是.解:【例 6】把分解因式 分析:先将系数 2 提出后,得到,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式 解:说明:从例 5、例 6 可以看出:如果一个多项式的项分组后,各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式 3、十字相乘法 (1)型的因式分解 这类式子在许多问题中经常出现,其特点是:(1)二次项系数是 1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和 因此,运用这个公式,可以把某些二次项系数为 1 的二次三项式分解因式 【例 7】把下列各式因式分解:(1)(2)解:(1)(2)说明:此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同 【例 8】把下列各式因式分解:(1)(2)解:(1)(2)说明:此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数与一次项系数的符号相同 【例 9】把下列各式因式分解:(1)(2)分析:(1)把看成 的二次三项式,这时常数项是,一次项系数是,把分解成与的积,而,正好是一次项系数 (2)由换元思想,只要把整体看作一个字母,可不必写出,只当作分解二次三项式 解:(1)(2)(2)一般二次三项式型的因式分解 大家知道,反过来,就得到:我们发现,二次项系数 分解成,常数项 分解成,把写成,这里按斜线交叉相乘,再相加,就得到,如果它正好等于的一次项系数,那么就可以分解成,其中位于上一行,位于下一行 这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法 必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解 【例 10】把下列各式因式分解:(1)(2)解:(1)(2)说明:用十字相乘法分解二次三项式很重要当二次项系数不是 1 时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号 4、其它因式分解的方法 (1)配方法 【例 11】分解因式 解:说明:这种设法配成有完全平方式的方法叫做配方法,配方后将二次三项式化为两个平方式,然后用平方差公式分解当然,本题还有其它方法,请大家试验(2)拆、添项法 【例 12】分解因式 分析:此多项式显然不能直接提取公因式或运用公式,分组也不易进行 细查式中无一次项,如果它能分解成几个因式的积,那么进行乘法运算时,必是把一次项系数合并为 0 了,可考虑通过添项或拆项解决 解:说明:本解法把原常数 4 拆成 1 与 3 的和,将多项式分成两组,满足系数对应成比例,造成可以用公式法及提取公因式的条件本题还可以将拆成,将多项式分成两组和 一般地,把一个多项式因式分解,可以按照下列步骤进行:(1)如果多项式各项有公因式,那么先提取公因式;(2)如果各项没有公因式,那么可以尝试运用公式来分解;(3)如果用上述方法不能分解,那么可以尝试用分组或其它方法(如十字相乘法)来分解;(4)分解因式,必须进行到每一个多项式因式都不能再分解为止 1把下列各式分解因式:(1)(2)(3)2把下列各式分解因式:(1)(2)(3)3把下列各式分解因式:(1)(2)(3)4把下列各式分解因式:(1)(2)(3)(4)(5)5把下列各式分解因式:(1)(2)(3)(4)(5)(6)(7)6已知,求代数式的值 练 习 7证明:当 为大于 2 的整数时,能被 120 整除 8已知,求证:2.1 一元二次方程 2.1.1 根的判别式 我们知道,对于一元二次方程 ax2bxc0(a0),用配方法可以将其变形为 因为 a0,所以,4a20于是(1)当 b24ac0 时,方程的右端是一个正数,因此,原方程有两个不相等的实数根 x1,2;(2)当 b24ac0 时,方程的右端为零,因此,原方程有两个等的实数根 x1x2;(3)当 b24ac0 时,方程的右端是一个负数,而方程的左边一定大于或等于零,因此,原方程没有实数根 由此可知,一元二次方程ax2bxc0(a0)的根的情况可以由 b24ac 来判定,我们把 b24ac 叫做一元二次方程 ax2bxc0(a0)的根的判别式,通常用符号“”来表示 综上所述,对于一元二次方程 ax2bxc0(a0),有(1)当 0 时,方程有两个不相等的实数根 x1,2;(2)当 0 时,方程有两个相等的实数根 x1x2;(3)当 0 时,方程没有实数根 例 1 判定下列关于 x 的方程的根的情况(其中 a 为常数),如果方程有实数根,写出方程的实数根(1)x23x30;(2)x2ax10;(3)x2ax(a1)0;(4)x22xa0 解:(1)3241330,方程没有实数根(2)该方程的根的判别式 a241(1)a240,所以方程一定有两个不等的实数根,(3)由于该方程的根的判别式为 a241(a1)a24a4(a2)2,所以,当 a2 时,0,所以方程有两个相等的实数根 x1x21;当 a2 时,0,所以方程有两个不相等的实数根 x11,x2a1(3)由于该方程的根的判别式为 2241a44a4(1a),所以 当 0,即 4(1a)0,即 a1 时,方程有两个不相等的实数根 ,;当 0,即 a1 时,方程有两个相等的实数根 x1x21;当 0,即 a1 时,方程没有实数根 说明:在第 3,4 小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对 a 的取值情况进行讨论,这一方法叫做分类讨论分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题 2.1.2 根与系数的关系(韦达定理)若一元二次方程 ax2bxc0(a0)有两个实数根,则有 ;所以,一元二次方程的根与系数之间存在下列关系:如果 ax2bxc0(a0)的两根分别是 x1,x2,那么 x1x2,x1x2这一关系也被称为韦达定理 特别地,对于二次项系数为 1 的一元二次方程 x2pxq0,若 x1,x2是其两根,由韦达定理可知 x1x2p,x1x2q,即 p(x1x2),qx1x2,所以,方程 x2pxq0 可化为 x2(x1x2)xx1x20,由于 x1,x2 是一元二次方程 x2pxq0 的两根,所以,x1,x2 也是一元二次方程x2(x1x2)xx1x20因此有 以两个数 x1,x2 为根的一元二次方程(二次项系数为 1)是 x2(x1x2)xx1x20 例 2 已知方程的一个根是 2,求它的另一个根及 k 的值 分析:由于已知了方程的一个根,可以直接将这一根代入,求出 k 的值,再由方程解出另一个根 但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出 k 的值 解法一:2 是方程的一个根,522k260,k7 所以,方程就为 5x27x60,解得 x12,x2 所以,方程的另一个根为,k 的值为7 解法二:设方程的另一个根为 x1,则 2x1,x1 由 ()2,得 k7 所以,方程的另一个根为,k 的值为7 例 3 已知关于 x 的方程 x22(m2)xm240 有两个实数根,并且这两个实数根的平方和比两个根的积大21,求 m 的值 分析:本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于 m 的方程,从而解得 m 的值但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零 解:设 x1,x2 是方程的两根,由韦达定理,得 x1x22(m2),x1x2m24 x12x22x1x221,(x1x2)23 x1x221,即 2(m2)23(m24)21,化简,得 m216m170,解得 m1,或 m17 当 m1 时,方程为 x26x50,0,满足题意;当 m17 时,方程为 x230 x2930,30

    注意事项

    本文(英才中学初高中数学衔接教材.pdf)为本站会员(ylj18****41534)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开