欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023届石家庄高三一检数学试题含答案.pdf

    • 资源ID:82196492       资源大小:3.79MB        全文页数:13页
    • 资源格式: PDF        下载积分:9.99金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9.99金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023届石家庄高三一检数学试题含答案.pdf

    试卷第 1 页,共 7 页 2023 届高三质量检测(一)数学答案 一、单选题:1-4 BCAB 5-8ADCC 二、多选题:9.BC 10.ACD 11.BC 12.AB 三、填空题:13.273e 14.-540 2415.;23 16.7 四、解答题 17.解:()sinsinsina+bC+Bc-bA 由正弦定理得 a+bbcc-ba .2 分 化简得222a+b-c=-ab cosC=-12 .4 分 C0,23C 5 分()3126a+b=c 由正弦定理得sinsinsinA+B=6C312 sinsinA-A33 23122 sinA+432 7 分 7034412AA 试卷第 2 页,共 7 页 即4334AA,9 分 sinsinA6234410 分 18 解析:()3,0.5xy,.2 分 51()()2.2iiixxyy,521()10iixx,51521()()0.22()iiiiixxyybxx ,.4 分 1.16aybx,0.221.16yx.6 分()把1lg72xu代入0.221.16yx 得:l0.0 3811 g.yu.8 分 令0.1 lg0.380.14uy,10 分 解得781110u A 浓度至少要达到781110mol/L.12 分 19.()证明:,.,.SASBAB OABSOABABCDSAB SOSABABCDSABABSOABCDSOBD为的中点,平面平面平面平面平面平面则.2 分 2CBBABOAD,=90CBOBAD,CBOBAD,故=BCOABD,+=+=90ABDCOBBCOCOB,试卷第 3 页,共 7 页 BDCO;4 分,COSOOBDSOC 平面 5 分()如图,在底面 ABCD 中,过 O 点作 OM 垂直 AB 交棱 CD 于 M 点,以 O 为坐标原点,射线 OS,OA,OM 为,x yz,轴的非负半轴,建立空间直角坐标系Oxyz.由已知得,(0 0 0)010010OAB,(,),(,)012012CD(,)(,),30 0S(,),332SEEESD假设存在点,设则(,)6 分 (33,1,2),(0,2,0),(3,1,2)AEABDCDS (,).200,22 03.3200,x y zSCDyDCxxyzDS设为平面的法向量,则即令,可得(,),nnnn 8 分(,).200,(33)(1)200,2,(2,0,33)x y zABEyABxyzAEx设为平面的法向量,则即,令可得mmmm 10 分 22331cos,55 5631717210210SESESDSD 因此有解得,或m nm nm n 12 分 20.解解:()方法一:由23563a+2a=S 得2d ,211nS=-nan,2 分 若数列nS为单调递减,则满足101nnS-Sn恒成立,即1201ann,得121an n恒成立.4 分 解得:12a.5 分 方法二:试卷第 4 页,共 7 页 由23563a+2a=S 得2d ,211nS=-nan,2 分 若数列nS为单调递减,则需满足11322a 4 分 解得:12a.5 分()根据题意数列 nb为:0010120111,2,1,2,2,3,2,2,2,523,2,2,2,21n-n-n可将数列分组:第一组为:1,02;第二组为:1,02,12;第三组为:3,02,12,22;第k组为:23k,02,12,2212k;7 分 则前k组一共有32312kkk 项,当12k 时,项数为90.故95T相当于是前12组的和再加上2323,1,2,2,2-这五项,即 00101112395112122222223 12T=+2+2+9 分 0010111222222+可看成是数列 nc21nnc=的前12项和,10 分 12139521 21 21121223 1 2 4 8 2142 805021 2T=+=.12 分 21.解:()由题意可知:点(4,3)P在双曲线上,所以221691ab,1 分 过 P 做x轴的平行线3y,与byxa 相交于,M N两点,那么,M N两点可求:3(,3)aMb,3(,3)aNb,所以22222233916944164aaaaabbbab,所以2a,3 分 代入221691ab,可知3b,所以双曲线的方程为22143xy.4 分()(选)由题意可知,直线l与双曲线 C 交于不同的两点 A,B,设1122(,),(,)Ax y Bx y,联立方程:22143xyykxm,可得:222(3 4)84120kxkmxm 试卷第 5 页,共 7 页 所以2340k,222(8)4(3 4)(412)0kmkm 即22340mk,由韦达定理可知:122834kmxxk,212241234mx xk,6 分 由条件121kk,即为:121233144yyxx,整理可得:211212(4)(3)(4)(3)(4)(4)xkxmxkxmxx 即:1 2121 2122(3 4)()8(3)4()16kx xmk xxmx xxx 8 分 代入韦达定理得:22286690mkmkkm 分解因式可得:(23)(43)0mkmk 所以23mk或43mk10 分 若23mk,直线23(2)3ykxmkxkk x,则直线l过定点(2,3);若43mk,则43(4)3ykxmkxkk x,则直线l过点 P,不合题意舍去.综上所述,直线l过定点(2,3).12 分(选)由题意可知,直线l与双曲线 C 交于不同的两点 A,B,设1122(,),(,)A x yB x y,联立方程:22143xyykxm,可得:222(3 4)84120kxkmxm 所以2340k,222(8)4(3 4)(412)0kmkm 即22340mk 由韦达定理可知:122834kmxxk,212241234mx xk6 分 由条件1 21k k,即为:121233144yyxx,整理可得:121211()()3()()91(4)(4)kxm kxmkxmkxmxx 即:221212121212()3()6914()16k x xkm xxmk xxmx xxx8 分 试卷第 6 页,共 7 页 展开代入韦达定理得:22732161890mkmkm 分解因式可得:(743)(43)0mkmk 所以437km 或43mk10 分 若437km,直线4343()777kykxmkxk x,则直线l过定点43(,)77;若43mk,则43(4)3ykxmkxkk x,则直线l过点 P,不合题意舍去.综上所述,直线l过定点43(,)77.12 分 22.解:()证明:令()(1)1f xxx,当1时,可知()0f x,原不等式成立;1 分 当1时,11()(1)(1)1fxxx,可知当(1,0)x 时,()0fx,()f x单调递减;当(0,)x,()0fx,()f x单调递增.3 分 所以()(0)0f xf,所以原不等式得证.4 分()要证对任意*nN,123(1)nnnnnnn恒成立,只要证:123.11111nnnnnnnnn,即证:121111.111111nnnnnnnnnnn6 分 由()可知对于任意正整数1,2,3.in,11111iinn,所以 11111111innininnn,那么 121111.11111nnnnnnnnnnn 试卷第 7 页,共 7 页(1)(2)11111111.11111n nn nn nnnnnn 1211111111.11111nnnnnnnnnnn(*)8 分 而11(1)12nn成立,证明:要证11(1)12nn,只要证111()121nn,令1(0,1 xn,即证明:21xx 成立,令()21xg xx,求导可得:()2 ln2 1xg x,当210log()ln2x时,()0g x,()g x单调递减;当21log()1ln2x时,()0g x,()g x单调递增,又(0)0g,(1)0g,所以当(0,1x时,()0g x.所以11(1)12nn.10 分 所以(*)1221111111()()()()()1()1222222nnnn 所以命题得证.12 分

    注意事项

    本文(2023届石家庄高三一检数学试题含答案.pdf)为本站会员(学****享)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开