2023年高中生物知识点全答案.doc
高一生物考试重要知识点 第一章走近细胞 第一节从生物圈到细胞1病毒没有细胞结构,但必须依赖(活细胞)才干生存,寄生在活细胞中,运用细胞里的物质结构基础生活,繁殖。2生命活动离不开细胞,细胞是生物体结构和功能的(基本单位)。3生命系统的结构层次:(细胞)、(组织)、(器官)、(系统)、(个体)、(种群)(群落)、(生态系统)、(生物圈)。4血液属于(组织)层次,皮肤属于(器官)层次。5植物没有(系统)层次,单细胞生物既可化做(个体)层次,又可化做(细胞)层次。6地球上最基本的生命系统是(细胞)。生物圈是最大的生态系统。7种群:在一定的区域内同种生物个体的总和。例:一个池塘中所有的鲤鱼。8群落:在一定的区域内所有生物的总和。例:一个池塘中所有的生物。(不是所有的鱼)9生态系统:生物群落和它生存的无机环境互相作用而形成的统一整体。10生物圈中存在着众多的单细胞生物,单个细胞就能完毕各种生命活动。许多植物和动物是多细胞生物,他们依赖各种分化的细胞密切合作,共同完毕一系列复杂的生命活动。以细胞代谢为基础的生物与环境之间的物质和能量的互换;以细胞增殖、分化为基础的生长与发育;以细胞内基因的传递和变化为基础的遗传与变异。 第二节细胞的多样性和统一性细胞的统一性:动植物细胞基本相似结构,都具有细胞膜、细胞质、细胞核(哺乳动物、成熟的红细胞没有细胞核)。一、高倍镜的使用环节:“一移二转三调”1 在低倍镜下找到物象,将物象移至视野中央(偏哪往哪移),2 转动(转换器),换上高倍镜。3 调节(光圈)和(反光镜),使视野亮度适宜。(高倍镜一般变暗,需调亮)4 调节(细准焦螺旋),使物象清楚。二、显微镜使用常识1调亮视野的两种方法(放大光圈)、(使用凹面镜)。2 高倍镜:物象(大),视野(暗),看到细胞数目(少)。 低倍镜:物象(小),视野(亮),看到的细胞数目(多)。3 物镜:(有)螺纹,镜筒越(长),放大倍数越大。目镜:(无)螺纹,镜筒越(短),放大倍数越大。放大倍数越大视野范围越小视野越暗视野中细胞数目越少每个细胞越大4放大倍数=物镜的放大倍数目镜的放大倍数5一行细胞的数目变化可根据视野范围与放大倍数成反比计算方法:个数×放大倍数的比例倒数=最后看到的细胞数如:在目镜10×物镜10×的视野中有一行细胞,数目是20个,在目镜不换物镜换成40×,在视野中能看见多少个细胞? 20×1/4=56圆行视野范围细胞的数量的变化可根据视野范围与放大倍数的平方成反比计算如:在目镜为10×物镜为10×的视野中看见充满的细胞数为20个,在目镜不换物镜换成20×,那么在视野中我们还能看见多少个细胞? 20×(1/2)2=5三、 原核生物与真核生物:科学家根据细胞内有无核膜为界线的细胞核,把细胞分为真核细胞和原核细胞两大类。原核生物:细菌(球、杆、螺旋、弧菌、乳酸菌)、衣原体、蓝藻、支原体(没有细胞壁,最小的细胞生物)、放线菌、立克次氏体真核生物:植物、动物、真菌(蘑菇、酵母菌、霉菌、大型真菌)病毒非真非原。蓝藻:发菜、颤藻、念珠藻、蓝球藻。蓝藻没有成型的细胞核,有拟核环状DNA分子(没有染色体)。蓝藻细胞质:含蓝藻素和叶绿素(物质基础),能进行光合作用(自养生物);核糖体。细菌中的绝大多数种类是营腐生或寄生生活的异氧生物。四、细胞学说1创建者:(施莱登,施旺)2细胞的发现者及命名者:英国科学家 罗伯特.虎克 3内容要点:动植物都是由细胞及其产物组成的;细胞是一个相对独立的单位;新细胞可以从老细胞产生。 4意义:揭示了(细胞统一性,和生物体结构的统一性)。 第二章组成细胞的元素和化合物 第一节细胞中的元素和化合物1、生物界与非生物界 统一性:元素种类大体相同 差异性:元素含量有差异2、组成细胞的元素(常见20多种)大量元素:C H O N P S K Ca Mg微量元素: Zn 、Mo、Cu、B、Fe、Mn(口诀:新木桶碰铁门)重要元素:C、H、O、N、P、S含量最高的四种元素:C、H、O、N(基本元素)最基本元素:C(干重下含量最高)3组成细胞的化合物 无机化合物:水(鲜重下含量最多),无机盐有机化合物:糖类,脂质,蛋白质(干重中含量最高的化合物),核酸4检测生物组织中糖类、脂肪和蛋白质实验原理:某些化学试剂可以使生物组织中的有关有机化合物产生特定的颜色反映。糖类中的还原糖(如葡萄糖、果糖、麦芽糖)与斐林试剂发生作用,生成砖红色沉淀。脂肪可以被苏丹红染成橘黄色(或被苏丹红染液染成红色)。淀粉遇碘变蓝色。蛋白质与双缩脲试剂发生作用,产生紫色反映。(1)还原糖的检测和观测常用材料:苹果和梨试剂:斐林试剂(甲液:0.1g/ml的NaOH 乙液:0.05g/ml的CuSO4)注意事项:还原糖有葡萄糖,果糖,麦芽糖甲乙液必须等量混合均匀后再加入样液中,现配现用必须用水浴加热颜色变化:浅蓝色 棕色 砖红色沉淀(2)脂肪的鉴定常用材料:花生子叶或向日葵种子试剂:苏丹或苏丹染液注意事项:切片要薄,如厚薄不均就会导致观测时有的地方清楚,有的地方模糊。酒精的作用是:洗去浮色需使用显微镜观测颜色变化:橘黄色或红色(3)蛋白质的鉴定常用材料:鸡蛋清(先稀释解决),黄豆组织样液,牛奶试剂:双缩脲试剂(A液:0.1g/ml的NaOH B液: 0.01g/ml的CuSO4 )注意事项:先加A液1ml,再加B液4滴颜色变化:变成紫色(4)淀粉的检测和观测常用材料:马铃薯试剂:碘液颜色变化:变蓝 第二节 生命活动的重要承担者蛋白质蛋白质是组成细胞的有机物中含量最多的。元素组成:C H O N(有的含N P S Fe等)基本单位:氨基酸一 氨基酸及其种类 氨基酸是组成蛋白质的基本单位(或单体)。种类:约20种通式:有8种氨基酸是人体细胞不能合成的(婴儿有9种),必须从外界环境中直接获取,叫必需氨基酸。此外12种氨基酸是人体可以合成的,叫非必需氨基酸。结构要点:每种氨基酸都至少具有一个氨基(-NH2)和一个羧基(-COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上。氨基酸的种类由R基(侧链基团)决定。二 蛋白质的结构氨基酸分子互相结合的方式是:一个氨基酸分子的羧基(COOH)和另一个氨基酸分子的氨基(NH2)相连接,同时脱去一分子水,这种结合方式叫做脱水缩合。连接两个氨基酸分子的化学键(NHCO)叫做肽键。有两个氨基酸分子缩合而成的化合物,叫做二肽。肽链能盘曲、折叠、形成有一定空间结构的蛋白质分子。三 蛋白质的功能1. 构成细胞和生物体结构的重要物质(肌肉毛发) 2. 催化细胞内的生理生化反映)3. 运送载体(血红蛋白) 4. 传递信息,调节机体的生命活动(胰岛素) 5. 免疫功能( 抗体)四 蛋白质分子多样性的因素构成蛋白质的氨基酸的种类,数目,排列顺序,以及蛋白质的空间结构不同导致蛋白质结构多样性。蛋白质结构多样性决定蛋白质的功能的多样性。 规律方法 1、构成生物体的蛋白质的20种氨基酸的结构通式为: 根据R基的不同分为不同的氨基酸。 氨基酸分子中,至少具有一个NH2和一个COOH位于同一个C原子上,由此可以判断是否属于构成蛋白质的氨基酸。2、公式:肽键数=失去H2O数=aa数-肽链数(不涉及环状)n个氨基酸脱水缩合形成m条多肽链时,共脱去(nm)个水分子,形成(nm)个肽键。至少存在m个NH2和m个COOH,具体还要加上R基上的氨(羧)基数。形成的蛋白质的分子量: nx氨基酸的平均分子量18(nm)3、氨基酸数=肽键数+肽链数4、蛋白质总的分子量=组成蛋白质的氨基酸总分子量-脱水缩合反映脱去的水的总分子量 第三节遗传信息的携带者核酸 一 核酸的分类 细胞生物含两种核酸:DNA和RNA病毒只具有一种核酸:DNA或RNA核酸涉及两大类:一类是脱氧核糖核酸(DNA);一类是核糖核酸(RNA)。二、 核酸的结构1、 核酸是由核苷酸连接而成的长链(C H O N P)。DNA的基本单位脱氧核糖核苷酸,RNA的基本单位核糖核苷酸。核酸初步水解成许多核苷酸。基本组成单位核苷酸(核苷酸由一分子五碳糖、一分子磷酸、一分子含氮碱基组成)。根据五碳糖的不同,可以将核苷酸分为脱氧核糖核苷酸(简称脱氧核苷酸)和核糖核苷酸。2、DNA由两条脱氧核苷酸链构成。RNA由一条核糖核苷酸连构成。3、核酸中的相关计算:(1)若是在具有DNA和RNA的生物体中,则碱基种类为5种;核苷酸种类为8种。(2)DNA的碱基种类为4种;脱氧核糖核苷酸种类为4种。(3)RNA的碱基种类为4种;核糖核苷酸种类为4种。 类别 DNA RNA基本单位 脱氧核糖核苷酸(4种) 核糖核苷酸(4种) 腺嘌呤脱氧核苷酸 鸟嘌呤脱氧核苷酸 鸟嘌呤核糖核苷酸 腺嘌呤核糖核苷酸 胞嘧啶脱氧核苷酸 胸腺嘧啶脱氧核苷酸 胞嘧啶核糖核苷酸 尿嘧啶核糖核苷酸碱基 腺嘌呤(A)、鸟嘌呤(G、)胞嘧啶(C)、胸腺嘧啶(T) 腺嘌呤(A)、 鸟嘌呤(G)胞嘧啶(C)、尿嘧啶(U)五碳糖 脱氧核糖 核糖磷酸 磷酸三、 核酸的功能:核酸是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用。 核酸在细胞中的分布观测核酸在细胞中的分布:材料:人的口腔上皮细胞试剂:甲基绿、吡罗红混合染色剂原理:DNA重要分布在细胞核内,RNA大部分存在于细胞质中。甲基绿使DNA呈绿色,吡罗红使RNA呈现红色。盐酸可以改变细胞膜的通透性,加速染色剂进入细胞,同时使染色质中的DNA与蛋白质分离。结论:真核细胞的DNA重要分布在细胞核中。线粒体、叶绿体内具有少量的DNA。RNA重要分布在细胞质中。 第四节细胞中的糖类和脂质 细胞中的糖类重要的能源物质糖类的分类,分布及功能:种类 分布 功能单糖 五碳糖核糖 (C5H10O5) 细胞中都有组成RNA的成分 脱氧核糖(C5H10O4)细胞中都有组成DNA的成分 六碳糖 (C6H12O6)葡萄糖细胞中都有重要的能源物质 果糖 植物细胞中提供能量 半乳糖 动物细胞中提供能量二糖 (C12H22O11)麦芽糖 发芽的小麦、谷控中含量丰富都能提供能量 蔗糖 甘蔗、甜菜中含量丰富 乳糖 人和动物的乳汁中含量丰富多糖 (C6H10O5)n淀粉 植物粮食作物的种子、变态根或茎等储藏器官中储存能量 纤维素植物细胞的细胞壁中支持保护细胞糖原 肝糖原 动物的肝脏中储存能量调节血糖肌糖原动物的肌肉组织中储存能量 细胞中的脂质脂质的分类 、分布及功能:1脂肪(C、H、O)存在人和动物体内的皮下,大网膜和肠系膜等部位。动物细胞中良好的储能物质,与糖类相同质量的脂肪储存能量是糖类的2倍。功能:保温减少内部器官之间摩擦缓冲外界压力,可以保护内脏器官。2(内脂)磷脂构成细胞膜以及各种细胞器膜重要成分。分布:人和动物的脑、卵细胞、肝脏、大豆的种子中含量丰富。 3固醇涉及:胆固醇-构成细胞膜重要成分;参与人体血液中脂质的运送。 性激素-促进人和动物生殖器官的发育以及生殖细胞的形成,激发并维持第二性征。 维生素D-促进人和动物肠道对Ca和P的吸取。单体和多聚体的概念:生物大分子如蛋白质是由许多氨基酸连接而成的。核酸是由许多核苷酸连接而成的。 氨基酸、核苷酸、单糖分别是蛋白质、核酸和多糖的单体,而这些大分子分别是单体的多聚体。 第五节细胞中的无机物1、细胞中的水涉及结合水:细胞结构的重要组成成分自由水:细胞内良好溶剂 ;运送养料和废物;许多生化反映有水的参与;提供液体环境。 自由水与结合水的关系:自由水和结合水可在一定条件下可以互相转化。细胞含水量与代谢的关系:代谢活动旺盛,细胞内自由水水含量高;代谢活动下降,细胞中结合水水含量高。2、细胞中的无机盐细胞中大多数无机盐以离子的形式存在无机盐的作用:1.细胞中许多有机物的重要组成成分2.维持细胞和生物体的生命活动有重要作用3.维持细胞的酸碱平衡 4.维持细胞的渗透压部分无机盐的作用 缺碘:地方性甲状腺肿大(大脖子病)、呆小症缺钙:抽搐、软骨病,儿童缺钙会得佝偻病,老年人会骨质疏松缺铁:缺铁性贫血 第三章细胞的基本结构 第一节 细胞膜系统的边界知识网络:1、研究细胞膜的常用材料:人或哺乳动物成熟红细胞2、细胞膜重要成分:脂质和蛋白质,尚有少量糖类 细胞膜成分特点:脂质中磷脂最丰富,功能越复杂的细胞膜,蛋白质种类和数量越多3、细胞膜功能:将细胞与环境分隔开,保证细胞内部环境的相对稳定控制物质出入细胞(选择透过性膜)进行细胞间信息交流方式一:内分泌细胞产生激素,随血液到达全身各处,与靶细胞的细胞膜表面的受体结合,将信息传递给靶细胞。方式二:相邻的两个细胞的细胞膜接触,信息从一个细胞传递给另一个细胞。例如,精子和卵细胞之间的辨认和结合。方式三:相邻的两个细胞之间形成通道,携带信息的物质通过通道进入另一个细胞。例如,高等植物细胞之间通过胞间连丝互相连接,也有信息交流的作用。一、制备细胞膜的方法(实验)原理:渗透作用(将细胞放在清水中,水会进入细胞,细胞涨破,内容物流出,得到细胞膜)选材:人或其它哺乳动物成熟红细胞,动物细胞没有细胞壁,没有细胞核和众多细胞器。提纯方法:差速离心法细节:取材用的是新鲜红细胞稀释液(血液加适量生理盐水)二、与生活联系:细胞癌变过程中,细胞膜成分改变,产生甲胎蛋白(AFP),癌胚抗原(CEA)三、细胞壁植物:纤维素和果胶(原核生物:肽聚糖) 作用:支持和保护四、 细胞膜特性: 结构特性:流动性 举例:(变形虫变形运动、白细胞吞噬细菌)五、 功能特性:选择透过性 举例:(腌制糖醋蒜,红墨水测定种子发芽率,判断种子胚、胚乳是否成活)五、细胞膜其它功能:维持细胞内环境稳定、分泌、吸取、辨认、免疫 第二节 细胞器系统内的分工合作分离各种细胞器的方法:差速离心法一、细胞器之间分工(1)双层膜叶绿体:进行光合作用,“能量转换站”,双层膜,分布在植物的叶肉细胞。线粒体:细胞进行有氧呼吸的重要场合。双层膜(内膜向内折叠形成脊),分布在动植物细胞体内。(2)单层膜内质网:蛋白质合成和加工,以及脂质合成的“车间”,单层膜,动植物都有。高尔基体:对来自内质网的蛋白质进行加工、分类和包装,单层膜,动植物都有,参与了植物细胞壁的形成。液泡:重要存在与植物细胞中,内有细胞液,含糖类、无机盐、色素和蛋白质等物质,可以调节植物细胞内的环境,充盈的液泡还可以使植物细胞保持坚挺。单层膜。溶酶体:内具有多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌,单层膜。(3)无膜核糖体:无膜,合成蛋白质的重要场合。中心体:动物和某些低等植物的细胞,由两个互相垂直排列的中心粒及周边物质组成,与细胞的有丝分裂有关,无膜。八大细胞器:内质网,液泡,线粒体,高尔基体,核糖体,溶酶体,叶绿体,中心体光镜能看到:细胞质,线粒体,叶绿体,液泡,细胞壁在细胞质中,除了细胞器外,尚有呈胶质状态的细胞质基质。实验:用高倍显微镜观测叶绿体和线粒体健那绿染液是将活细胞中线粒体染色的专一性染料,可以使活细胞中的线粒体呈现蓝绿色。材料:新鲜的藓类的叶二、分泌蛋白的合成和运送有些蛋白质是在细胞内合成后,分泌到细胞外起作用,这类蛋白叫分泌蛋白。如消化酶(催化作用)、抗体(免疫)和一部分激素(信息传递) 核糖体 内质网 高尔基体 细胞膜 (合成肽链) (加工成蛋白质) (进一步加工) (囊泡与细胞膜融合,蛋白质释放)分泌蛋白从合成至分泌到细胞外,通过了哪些细胞器活细胞结构?答:附和在内质网的核糖体内质网高尔基体细胞膜内质网鼓出由膜形成的囊泡,包裹着要运送的蛋白质,离开内质网到达高尔基体,与高尔基体膜融合成为高尔基体膜的一部分。三、生物膜系统1、概念:细胞膜、核膜,各种细胞器的膜共同组成的生物膜系统2、作用:使细胞具有稳定内部环境物质运送、能量转换、信息传递;为各种酶提供大量附着位点,是许多生化反映的场合;把各种细胞器分隔开,保证生命活动高效、有序进行。第一节 细胞核系统的控制中心除了高等植物成熟的筛管细胞和哺乳动物成熟的红细胞等很少数细胞外,真核细胞都有细胞核。绝大多数只有一个核。细胞核控制着细胞的代谢和遗传。细胞核控制细胞的分裂、分化。a. 细胞核的结构核膜(双层膜,把核内物质与细胞质分开)染色质(重要由DNA和蛋白质组成,DNA是遗传信息的载体)核仁(与某种RNA的合成以及核糖体的形成有关)核孔(实现核质之间频繁的物质互换和信息交流,DNA不能随意进出细胞核)细胞分裂时,细胞核解体,染色质高度螺旋化,缩短变粗,成为光学显微镜下清楚可见的圆柱状或杆状的染色体。分裂结束时,染色体解螺旋,重新成为细丝状的染色质。染色质(分裂间期)和染色体(分裂时)是同样的物质在细胞不同时期的两种存在状态。细胞核具有控制细胞代谢的功能。 第四章细胞的物质输入和输出 第一节物质跨膜运送的实例一、渗透作用(1)渗透作用:指水分子(或其他溶剂分子)通过半透膜的扩散。(2)发生渗透作用的条件:是具有半透膜 是半透膜两侧具有浓度差。二、细胞的吸水和失水(原理:渗透作用)1、动物细胞的吸水和失水外界溶液浓度 < 细胞质浓度时,细胞吸水膨胀外界溶液浓度 > 细胞质浓度时,细胞失水皱缩外界溶液浓度 = 细胞质浓度时,水分进出细胞处在动态平衡2、植物细胞的吸水和失水细胞内的液体环境重要指的是液泡里面的细胞液。原生质层:细胞膜和液泡膜以及两层膜之间的细胞质。植物细胞的原生质层相称于一层半透膜。外界溶液浓度 > 细胞液浓度时,细胞质壁分离。原生质层比细胞壁的伸缩性大,当细胞不断失水时,原生质层就会与细胞壁逐渐分离下来,也就是逐渐发生了质壁分离。外界溶液浓度<细胞液浓度时,细胞质壁分离复原外界溶液浓度=细胞液浓度时就,水分进出细胞处在动态平衡 中央液泡大小 原生质层位置 细胞大小蔗糖溶液变小 脱离细胞壁 基本不变清水 逐渐恢复本来大小恢复原位 基本不变1、质壁分离产生的条件:(1)具有大液泡 (2)具有细胞壁(3)外界溶液浓度 > 细胞液浓度2、质壁分离产生的因素:内因:原生质层伸缩性大于细胞壁伸缩性外因:外界溶液浓度>细胞液浓度1、植物吸水方式有两种:(1)吸帐作用(未形成液泡)如:干种子、根尖分生区(2)渗透作用(形成液泡)二、物质跨膜运送的其他实例1、对矿质元素的吸取逆相对含量梯度积极运送对物质是否吸取以及吸取多少,都是由细胞膜上载体的种类和数量决定。2、比较几组概念扩散:物质从高浓度到低浓度的运动叫做扩散(扩散与过膜与否无关) (如:O2从浓度高的地方向浓度低的地方运动)渗透:水分子或其他溶剂分子通过半透膜的扩散又称为渗透 (如:细胞的吸水和失水,原生质层相称于半透膜)半透膜:物质的透过与否取决于半透膜孔隙直径的大小 (如:动物膀胱、玻璃纸、肠衣、鸡蛋的卵壳膜等)3、选择透过性膜:细胞膜上具有载体,且不同生物的细胞膜上载体种类和数量不同,构成了对不同物质吸取与否和吸取多少的选择性。可以说细胞膜和其他生物膜都是选择性透过性膜,这种膜可以让水分子自由通过,一些离子和小分子也可以通过,而其他的离子、小分子和大分子不能通过。 第二节 生物膜的流动镶嵌模型一、对生物膜结构的探索历程膜是由脂质组成的。膜的重要成分是脂质和蛋白质。磷酸头部亲水,脂肪酸尾部疏水。罗伯特森暗亮暗蛋白质脂质蛋白质静态统一结构桑格和尼克森提出流动镶嵌模型。细胞膜具有流动性。二、流动镶嵌模型的基本内容磷脂双分子层构成了膜的基本支架蛋白质分子有的镶嵌在磷脂双分子层表面,有的部分或所有嵌入磷脂双分子层中,有的横跨整个磷脂双分子层磷脂双分子层和大多数蛋白质分子可以运动。轻油般的流体,具有流动性。细胞膜的外表有一层糖蛋白(糖被)。细胞膜表面尚有糖类和脂质分子结合成的糖脂。组成:由细胞膜上的蛋白质与糖类结合形成。作用:细胞辨认、免疫反映、血型鉴定、保护润滑等。 第三节物质跨膜运送的方式一、被动运送:物质进出细胞,顺浓度梯度的扩散,称为被动运送。(1)自由扩散:物质通过简朴的扩散作用进出细胞(2)协助扩散:进出细胞的物质借助载体蛋白的扩散二、积极运送:从低浓度一侧运送到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反映所释放的能量,这种方式叫做积极运送。逆浓度梯度的运送。保证了活细胞可以按照生命活动的需要,积极选择吸取所需要的营养物质,排除代谢废物和有害物质。 方向 载体 能量 举例自由扩散 高低. 不需要 不需要 水、CO2、O2、N2、乙醇、甘油、苯、脂肪酸、维生素 (水,气体小分子,脂溶性有机小分子,脂肪酸,胆固醇,性激素,维D)协助扩散 高低 需要 不需要 葡萄糖进入红细胞积极运送 低高 需要 需要 氨基酸、K+、Na+、Ca+等离子、葡萄糖进入小肠上皮细胞三、大分子物质进出细胞的方式:胞吞、胞吐(如蛋白质,体现膜的流动性,需要消耗能量) 第五章细胞的能量供应和运用 第一节减少反映活化能的酶一、细胞代谢与酶1、细胞代谢的概念:细胞内每时每刻进行着许多化学反映,统称为细胞代谢.3、酶的概念:酶是活细胞产生的具有催化作用的有机物,绝大多数是蛋白质,少数是RNA。4、酶的特性:专一性,高效性,作用条件较温和(最适温度,最适pH)5、活化能:分子从常态转变为容易发生化学反映的活跃状态所需要的能量。机理:减少活化能。实质:减少活化能的作用更显著,因而催化效率更高。二、影响酶促反映的因素1、底物浓度。 2、酶浓度。 3、PH值:过酸、过碱使酶失活4、温度:高温使酶失活。低温减少酶的活性,在适宜温度下酶活性可以恢复。三、实验1、比较过氧化氢酶在不同条件下的分解(过程见课本P79)实验结论:酶具有催化作用,并且催化效率要比无机催化剂Fe3+高得多对照实验:除一个因素外,其余因素都保持不变的实验。原则:对照原则,单一变量的原则。2、影响酶活性的条件(规定用控制变量法,自己设计实验)建议用淀粉酶探究温度对酶活性的影响,用过氧化氢酶探究PH对酶活性的影响。 第二节细胞的能量“通货”ATP 1、 直接给细胞的生命活动提供能量的有机物ATP(是细胞内的一种高能磷酸化合物,中文名称叫做三磷酸腺苷)2、ATP分子中具有高能磷酸键ATP是三磷酸腺苷的缩写,结构式可简写成APPP,A代表腺苷,P代表磷酸集团,代表高能磷酸键。ATP可以水解(高能磷酸键水解),远离A的易断裂(释放能量);易形成(储存能量)。3、ATP和ADP可以互相转化(酶的作用)ADP + Pi+ 能量 ATPATP ADP + Pi+ 能量ATP和ADP的互相转化时时刻不断的发生并且处在动态平衡之中。4、ATP水解时的能量用于各种生命活动。ADP转化为ATP所需能量来源:动物和人:呼吸作用绿色植物:呼吸作用、光合作用a. ATP的运用吸能反映一般与ATP水解相联系;放能反映一般与ATP的合成有关。 第三节ATP 的重要来源细胞呼吸呼吸作用的实质:细胞内有机物的氧化分解,并释放能量。细胞呼吸是指有机物在细胞内通过一系列的氧化分解,生成二氧化塘或其他产物,释放能量并生成ATP的过程。a. 细胞呼吸的方式实验:探究酵母菌细胞呼吸的方式材料:新鲜的食用酵母菌(生殖快,细胞代谢旺盛,实验效果明显。)检测酒精的产生:橙色的重铬酸钾溶液,在酸性条件下与乙醇发生化学反映,变成灰绿色。b. 有氧呼吸有氧呼吸的重要场合是线粒体。线粒体的内膜上和基质中具有许多种与有氧呼吸有关的酶,少量的DNA。一般地说,线粒体均匀的分布在细胞质中,肌质体是由大量变性的线粒体组成的。有氧呼吸最常运用的物质是葡萄糖,反映方程式可以简写成:总反映式:C6H12O6 +6O2 6CO2 +6H2O +大量能量(38ATP)第一阶段:细胞质基质 C6H12O6 2丙酮酸+少量H+少量能量(2ATP) 第二阶段:线粒体基质 2丙酮酸+6H2O 6CO2+大量H +少量能量(2ATP)第三阶段:线粒体内膜 24H+6O2 12H2O+大量能量(34ATP) 概括的说,有氧呼吸是指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放能量,生成大量ATP的过程。c. 无氧呼吸:两个阶段,需要不同酶的催化,都在细胞质基质中进行。3、无氧呼吸产生酒精:C6H12O6 2C2H5OH+2CO2+少量能量发生生物:大部分植物,酵母菌产生乳酸:C6H12O6 2乳酸+少量能量发生生物:动物,乳酸菌,马铃薯块茎,玉米胚反映场合:细胞质基质 注意:微生物的无氧呼吸也叫发酵,生成乳酸的叫乳酸发酵,生成酒精的叫酒精发酵1 有氧呼吸及无氧呼吸的能量去路有氧呼吸:所释放的能量一部分用于生成ATP,大部分以热能形式散失了。无氧呼吸:能量小部分用于生成ATP,大部分储存于乳酸或酒精中2 有氧呼吸过程中氧气的去路:氧气用于和H生成水 第四节能量之源光与光合作用一、捕获光能的色素 叶绿体中的色素有4种,他们可以归纳为两大类:叶绿素(约占3/4):叶绿素a(蓝绿色) 叶绿素b(黄绿色)类胡萝卜素(约占1/4):胡萝卜素(橙黄色) 叶黄素(黄色)叶绿素重要吸取红光和蓝紫光,类胡萝卜素重要吸取蓝紫光。白光下光合作用最强,另一方面是红光和蓝紫光,绿光下最弱。由于叶绿素对绿光吸取最少,绿光被反射出来,所以叶片呈绿色。二、实验绿叶中色素的提取和分离1 实验原理:(1)提取:绿叶中的色素都能溶解在有机溶剂中如无水乙醇,(2)分离:且他们在层析液中的溶解度不同,溶解度高的随层析液在滤纸上扩散得快,2 方法环节中需要注意的问题:(环节要记准确)(1)研磨时加入二氧化硅和碳酸钙的作用是什么?二氧化硅有助于研磨得充足,碳酸钙可防止研磨中的色素被破坏。(3)滤纸上的滤液细线为什么不能触及层析液?防止细线中的色素被层析液溶解。(4)滤纸条上有几条不同颜色的色带?其排序如何?宽窄如何?有四条色带,自上而下依次是橙黄色的胡萝卜素,黄色的叶黄素,蓝绿色的叶绿素a,黄绿色的叶绿素b。最宽的是叶绿素a,最窄的是胡萝卜素。四、光合作用的原理1、光合作用的探究历程:(1)1771年,英国的普利斯特利的实验证实:植物可以更新因蜡烛燃烧或小白鼠呼吸而变得污浊的空气。(2)1779年,荷兰的英格豪斯证明了植物体更新空气离不开光照。(3)1785年,随着空气组成成分的发现,人们才明确绿叶在光下放出的气体是氧气,吸取的是二氧化碳。(4)1864年,德国的萨克斯的实验证实了光合作用的产物除氧气外尚有淀粉。(5)1939年,美国的鲁宾和卡门运用同位素标记法证明了光合作用释放的氧气来自水。(6)20世纪40年代,美国的卡尔文,运用同位素标记技术最终探明了CO2中的碳在光合作用中转化成有机物中碳的途径。2、光合作用的过程: (纯熟掌握课本P103下方的图) 总反映式:CO2+H2O (CH2O)+O2 ,其中(CH2O)表达糖类。(1)光反映阶段:必须有光才干进行场合:类囊体薄膜上反映式:水的光解:H2O 1/2O2+2HATP形成:ADP+Pi+光能 ATP光反映中,光能转化为ATP中活跃的化学能(2)暗反映阶段:有光无光都能进行场合:叶绿体基质 CO2的固定:CO2+C5 2C3C3的还原:2C3+H+ATP (CH2O)+C5+ADP+Pi 暗反映中,ATP中活跃的化学能转化为(CH2O)中稳定的化学能联系:光反映为暗反映提供ATP和H,暗反映为光反映提供合成ATP的原料ADP和Pi五、影响光合作用的因素及在生产实践中的应用(1)光对光合作用的影响光的波长:叶绿体中色素的吸取光波重要在红光和蓝紫光。光照强度:植物的光合作用强度在一定范围内随着光照强度的增长而增长,但光照强度达成一定期,光合作用的强度不再随着光照强度的增长而增长光照时间:光照时间长,光合作用时间长,有助于植物的生长发育。(2)温度温度低,光合速率低。随着温度升高,光合速率加快,温度过高时会影响酶的活性,光合速率减少。生产上白天升温,增强光合作用,晚上减少室温,克制呼吸作用,以积累有机物。(3)CO2浓度:在一定范围内,植物光合作用强度随着CO2浓度的增长而增长,但达成一定浓度后,光合作用强度不再增长。生产上使田间通风良好,供应充足的CO2(4)水分的供应当植物叶片缺水时,气孔会关闭,减少水分的散失,同时影响CO2进入叶内,暗反映受阻,光合作用下降。生产上应适时灌溉,保证植物生长所需要的水分。六、化能合成作用概念:自然界中少数种类的细菌,虽然细胞内没有叶绿素,不能进行光合作用,但是可以运用体外环境中的某些无机物氧化时所释放的能量来制造有机物,这种合成作用,叫做化能合成作用,这些细菌也属于自养生物。如:硝化细菌,不能运用光能,但能将土壤中的NH3氧化成HNO2,进而将HNO2氧化成HNO3。硝化细菌能运用这两个化学反映中释放出来的化学能,将CO2和水合成为糖类,这些糖类可供硝化细菌维持自身的生命活动.举例:硝化细菌、硫细菌、铁细菌、氢细菌自养型生物:绿色植物、光合细菌、化能合成性细菌异养型生物:动物、人、大多数细菌、真菌 第6章细胞的生命历程 第1节细胞的增殖一、限制细胞长大的因素:细胞体积越大,其相对表面积越小,细胞的物质运送的效率就越低。细胞表面积与体积的关系限制了细胞的长大。细胞核控制范围(核质比)大细胞小。二、细胞增殖1.细胞增殖的意义:生物体生长、发育、繁殖和遗传的基础2.真核细胞分裂的方式:有丝分裂、无丝分裂、减数分裂。有丝分裂是真核生物进行细胞分裂的重要方式。(一)细胞周期概念:指连续分裂的细胞,从一次分裂完毕时开始,到下一次分裂完毕时为止。(二)植物细胞有丝分裂各期的重要特点:1.分裂间期特点:分裂间期所占时间长。完毕DNA的复制和有关蛋白质的合成。结果:每个染色体都形成两个姐妹染色单体,呈染色质形态2分裂期口诀:前:膜仁消失现两体,中:形定数晰赤道齐,后:点裂数加均两极,末:两现两消板成壁(植物),两现两消重开始(动物)参与的细胞器:间期:核糖体,中心体前期:中心体(复制形成纺锤体)末期:高尔基体(细胞壁的合成)线粒体全过程。有单体出现时,DNA与