2023年勾股定理知识点总结及练习.doc
勾股定理知识总结一基础知识点:1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其重要应用:(1)已知直角三角形的两边求第三边(在中,则,)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)运用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理假如三角形的三边长:a、b、c,则有关系a2+b2c2,那么这个三角形是直角三角形。要点诠释:勾股定理的逆定理是鉴定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来拟定三角形的也许形状,在运用这一定理时应注意:(1)一方面拟定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2a2+b2,则ABC是以C为直角的直角三角形(若c2>a2+b2,则ABC是以C为钝角的钝角三角形;若c2<a2+b2,则ABC为锐角三角形)。(定理中,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,满足,那么以,为三边的三角形是直角三角形,但是为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是鉴定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。规律方法指导1勾股定理的证明实际采用的是图形面积与代数恒等式的关系互相转化证明的。2勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。3勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的重要错误。4. 勾股定理的逆定理:假如三角形的三条边长a,b,c有下列关系:a2+b2c2,那么这个三角形是直角三角形;该逆定理给出鉴定一个三角形是否是直角三角形的鉴定方法5.应用勾股定理的逆定理鉴定一个三角形是不是直角三角形的过程重要是进行代数运算,通过学习加深对“数形结合”的理解5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思绪是图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变根据同一种图形的面积不同的表达方法,列出等式,推导出勾股定理常见方法如下:方法一:,化简可证方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积四个直角三角形的面积与小正方形面积的和为大正方形面积为 所以6:勾股数可以构成直角三角形的三边长的三个正整数称为勾股数,即中,为正整数时,称,为一组勾股数记住常见的勾股数可以提高解题速度,如;8,15,17;9,40,41等勾股定理练习一 填空题:1. 在RtABC中,C=90°(1)若a=5,b=12,则c=_;(2)b=8,c=17,则SABC=_。2.若一个三角形的三边之比为51213,则这个三角形是_(按角分类)。3. 直角三角形的三边长为连续自然数,则其周长为_。4传说,古埃及人曾用拉绳”的方法画直角,现有一根长24厘米的绳子,请你运用它拉出一个周长为24厘米的直角三角形,那么你拉出的直角三角形三边的长度分别为_厘米,_厘米,_厘米,其中的道理是_.6观测下列各式:32+42=52;82+62=102;152+82=172;242+102=262;你有没有发现其中的规律?请用你发现的规律写出接下来的式子:_。AB第8题图7运用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图(最早由三国时期的数学家赵爽给出的)从图中可以看到:大正方形面积小正方形面积四个直角三角形面积 因而c2 ,化简后即为c2 A10064abc8 一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是_。二 选择题:10三个正方形的面积如图,正方形A的面积为( )A. 6 B. C. 64 D. 811.已知直角三角形的两条边长分别是5和12,则第三边为 ()或不能拟定12.下列命题假如a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;假如直角三角形的两边是5、12,那么斜边必是13;假如一个三角形的三边是12、25、21,那么此三角形必是直角三角形;一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2b2c2=211。其中对的的是() A、B、C、D、13.三角形的三边长为(a+b)2=c2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形.14.如图一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距 () A、25海里B、30海里C、35海里D、40海里15. 已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为() A、40B、80C、40或360D、80或36016某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要() A、450a元B、225a 元C、150a元 D、300a元北南A东第14题图150°20m30m第16题图三解答题:18.(1)在数轴上作出表达 的 点.19有一个小朋友拿着一根竹竿要通过一个长方形的门,假如把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺, 求竹竿高与门高。20一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)假如梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米? AABABOA第20题图二次根式复习【知识回顾】1.二次根式:式子(0)叫做二次根式。2.最简二次根式:必须同时满足下列条件:被开方数中不含开方开的尽的因数或因式; 被开方数中不含分母; 分母中不含根式。3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。4.二次根式的性质:(0)(0)0 (=0);(1)()2= (0); (2)5.二次根式的运算:二次根式的加减运算: 先把二次根式化成最简二次根式,然后合并同类二次根式即可。二次根式的乘除运算: =(0,b0); 【例题讲解】例1 计算:(1); (2); (3) (a+b0)分析:根据二次根式的性质可直接得到结论。例2 计算:· · ·(a0,b0)分析:本例先运用二次根式的乘法法则计算,再运用积的算术平方根的意义进行化简得出计算结果。例3 计算:(1) + + (2) + (3) + 【基础训练】1化简:(1)_ _; (2)_ _; (3)_ _;(4)_ _; (5)。2.(08,安徽)化简=_。4. 化简:(3)(08,宁夏)= ; (4)(08,黄冈)5-2=_ _;6(08,广州)的倒数是 。8.下列运算对的的是A、 B、 C、 D、9(08,中山)已知等边三角形ABC的边长为,则ABC的周长是10. 比较大小:。11(08,嘉兴)使故意义的的取值范围是 13. (08,黑龙江)函数中,自变量的取值范围是 14.下列二次根式中,的取值范围是2的是A、 B、 C、 D、15.(08,荆州)下列根式中属最简二次根式的是A. B. C. D.19.(08,乐山)已知二次根式与是同类二次根式,则的值可以是 A、5 B、6 C、7 D、820(08,大连)若,则xy的值为A B C D21(08,遵义)若,则 22.计算:(1)(08,长春) (2)(08,长春) (3)(08,上海)23.先将÷化简,然后自选一个合适的x值,代入化简后的式子求值。24.(08,广州)如图,实数、在数轴上的位置,化简 :【能力提高】25.( 08,济宁)若,则的取值范围是ABCD26.(08,济宁)如图,数轴上两点表达的数分别为1和,点关于点的对称点为点,则点所表达的数是ABCD