欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    3高中数学三角函数知识点总结.doc

    • 资源ID:82395774       资源大小:1.15MB        全文页数:14页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    3高中数学三角函数知识点总结.doc

    精品教育高考三角函数1.特殊角的三角函数值:sin= 0cos= 1tan= 0sin3=cos3=tan3=sin=cos=tan=1sin6=cos6=tan6=sin9=1cos9=0tan9无意义2角度制与弧度制的互化: 36918273603.弧长及扇形面积公式弧长公式: 扇形面积公式:S=-是圆心角且为弧度制。 r-是扇形半径4.任意角的三角函数设是一个任意角,它的终边上一点p(x,y), r=(1)正弦sin= 余弦cos= 正切tan=(2)各象限的符号: + -xy+O +xyO + +yOsin cos tan5.同角三角函数的基本关系:(1)平方关系:sin2+ cos2=1。(2)商数关系:=tan ()6. 诱导公式:,口诀:函数名称不变,符号看象限,口诀:正弦与余弦互换,符号看象限7正弦函数、余弦函数和正切函数的图象与性质倍角公式sin2=2sin·coscos2=cos2-sin2=2cos2-1=1-2sin2两角和与差的三角函数关系sin()=sin·coscos·sincos()=cos·cossin·sin8、三角函数公式:降幂公式: 升幂公式 : 1+cos= cos21-cos= sin29正弦定理 :.余弦定理:;.三角形面积定理.1直角三角形中各元素间的关系:如图,在ABC中,C90°,ABc,ACb,BCa。(1)三边之间的关系:a2b2c2。(勾股定理)(2)锐角之间的关系:AB90°;(3)边角之间的关系:(锐角三角函数定义)sinAcosB,cosAsinB,tanA。2斜三角形中各元素间的关系:在ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。(1)三角形内角和:ABC。(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC。3三角形的面积公式:(1)ahabhbchc(ha、hb、hc分别表示a、b、c上的高);(2)absinCbcsinAacsinB;4解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形解斜三角形的主要依据是:设ABC的三边为a、b、c,对应的三个角为A、B、C。(1)角与角关系:A+B+C = ;(2)边与边关系:a + b > c,b + c > a,c + a > b,ab < c,bc < a,ca > b;(3)边与角关系:正弦定理 (R为外接圆半径);余弦定理 c2 = a2+b22bccosC,b2 = a2+c22accosB,a2 = b2+c22bccosA;它们的变形形式有:a = 2R sinA,。5三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。(1)角的变换因为在ABC中,A+B+C=,所以sin(A+B)=sinC;cos(A+B)=cosC;tan(A+B)=tanC。;四【典例解析】题型1:正、余弦定理(2009岳阳一中第四次月考).已知中,则( ) A. B C D 或答案 C例1(1)在中,已知,cm,解三角形;(2)在中,已知cm,cm,解三角形(角度精确到,边长精确到1cm)。解析:(1)根据三角形内角和定理,;根据正弦定理,;根据正弦定理,(2)根据正弦定理,因为,所以,或当时, ,当时, ,点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器例2(1)在ABC中,已知,求b及A;(2)在ABC中,已知,解三角形解析:(1)=cos=求可以利用余弦定理,也可以利用正弦定理:解法一:cos解法二:sin又,即(2)由余弦定理的推论得:cos;cos;点评:应用余弦定理时解法二应注意确定A的取值范围。题型2:三角形面积例3在中,求的值和的面积。解法一:先解三角方程,求出角A的值。 又, , 。 解法二:由计算它的对偶关系式的值。 , +得。 得。从而。以下解法略去。点评:本小题主要考查三角恒等变形、三角形面积公式等基本知识,着重数学考查运算能力,是一道三角的基础试题。两种解法比较起来,你认为哪一种解法比较简单呢?例4(2009湖南卷文)在锐角中,则的值等于 ,的取值范围为 . 答案  2 解析 设由正弦定理得由锐角得,又,故,例5(2009浙江理)(本题满分14分)在中,角所对的边分别为,且满足, (I)求的面积; (II)若,求的值解 (1)因为,又由得, (2)对于,又,或,由余弦定理得, 例6(2009全国卷理)在中,内角A、B、C的对边长分别为、,已知,且 求b 分析::此题事实上比较简单,但考生反应不知从何入手.对已知条件(1)左侧是二次的右侧是一次的,学生总感觉用余弦定理不好处理,而对已知条件(2) 过多的关注两角和与差的正弦公式,甚至有的学生还想用现在已经不再考的积化和差,导致找不到突破口而失分.解法一:在中则由正弦定理及余弦定理有:化简并整理得:.又由已知.解得. 解法二:由余弦定理得: .又,.所以又,即由正弦定理得,故 由,解得.评析:从08年高考考纲中就明确提出要加强对正余弦定理的考查.在备考中应注意总结、提高自己对问题的分析和解决能力及对知识的灵活运用能力.另外提醒:两纲中明确不再考的知识和方法了解就行,不必强化训练题型4:三角形中求值问题例7的三个内角为,求当A为何值时,取得最大值,并求出这个最大值。解析:由A+B+C=,得=,所以有cos =sin。cosA+2cos =cosA+2sin =12sin2 + 2sin=2(sin )2+ ;当sin = ,即A=时, cosA+2cos取得最大值为。点评:运用三角恒等式简化三角因式最终转化为关于一个角的三角函数的形式,通过三角函数的性质求得结果。例8(2009浙江文)(本题满分14分)在中,角所对的边分别为,且满足, (I)求的面积; (II)若,求的值解() 又,而,所以,所以的面积为:()由()知,而,所以所以点评:本小题主要考察三角函数概念、同角三角函数的关系、两角和与差的三角函数的公式以及倍角公式,考察应用、分析和计算能力题型5:三角形中的三角恒等变换问题例9在ABC中,a、b、c分别是A、B、C的对边长,已知a、b、c成等比数列,且a2c2=acbc,求A的大小及的值。分析:因给出的是a、b、c之间的等量关系,要求A,需找A与三边的关系,故可用余弦定理。由b2=ac可变形为=a,再用正弦定理可求的值。解法一:a、b、c成等比数列,b2=ac。又a2c2=acbc,b2+c2a2=bc。在ABC中,由余弦定理得:cosA=,A=60°。在ABC中,由正弦定理得sinB=,b2=ac,A=60°,=sin60°=。解法二:在ABC中,由面积公式得bcsinA=acsinB。b2=ac,A=60°,bcsinA=b2sinB。=sinA=。评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理。例10在ABC中,已知A、B、C成等差数列,求的值。解析:因为A、B、C成等差数列,又ABC180°,所以AC120°,从而60°,故tan.由两角和的正切公式,得。所以。点评:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解,同时结合三角变换公式的逆用。题型6:正、余弦定理判断三角形形状例11在ABC中,若2cosBsinAsinC,则ABC的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形答案:C解析:2sinAcosBsin(AB)sin(AB)又2sinAcosBsinC,sin(AB)0,AB点评:本题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路和变形方向,通畅解题途径例12(2009四川卷文)在中,为锐角,角所对的边分别为,且(I)求的值;(II)若,求的值。 解(I)为锐角, (II)由(I)知, 由得,即又 21.(2009四川卷文)在中,为锐角,角所对的边分别为,且(I)求的值;(II)若,求的值。 解(I)为锐角, (II)由(I)知, 由得,即又 点评:三角函数有着广泛的应用,本题就是一个典型的范例。通过引入角度,将图形的语言转化为三角的符号语言,再通过局部的换元,又将问题转化为我们熟知的函数,这些解题思维的拐点,你能否很快的想到呢?五【思维总结】1解斜三角形的常规思维方法是:(1)已知两角和一边(如A、B、C),由A+B+C = 求C,由正弦定理求a、b;(2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = ,求另一角;(3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = 求C,再由正弦定理或余弦定理求c边,要注意解可能有多种情况;(4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C = ,求角C。2三角形内切圆的半径:,特别地,;3三角学中的射影定理:在ABC 中,4两内角与其正弦值:在ABC 中,5解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”。-可编辑-

    注意事项

    本文(3高中数学三角函数知识点总结.doc)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开