中级微观经济学ppt课件-Chapter5_Choice.ppt
C-D效用函数图形第五章选择选择u在分析了消费者选择集及其偏好(可以由效用在分析了消费者选择集及其偏好(可以由效用函数表示)之后,我们现在将两者放在一起考函数表示)之后,我们现在将两者放在一起考虑并分析消费者如何做出自己的最优选择。虑并分析消费者如何做出自己的最优选择。u在数学方面,这是一个受约束的最优化问题在数学方面,这是一个受约束的最优化问题(a constrained maximization problem););u在经济学方面,这是一个理性选择问题(在经济学方面,这是一个理性选择问题(a rational choice problem)。)。理性约束选择x1x2理性约束选择效用x1x2可行消费束可行消费束理性约束选择效用x1x2可行消费束可行消费束理性约束选择效用x1x2可行消费束可行消费束更受偏好的消费束更受偏好的消费束理性约束选择效用可行消费束可行消费束x1x2更受偏好消费束更受偏好消费束理性约束选择效用x1x2x1*x2*理性约束选择效用x1x2x1*x2*(x1*,x2*)是消是消费者最偏好的、者最偏好的、可可负担得起的商品束。担得起的商品束。在最在最优选择点上,点上,无差异曲无差异曲线不穿不穿过预算算线。x1x2x1x2消费束消费束(x1,x2)是无差异曲是无差异曲线和预算线的交点线和预算线的交点 x1x2x1x2消费束消费束(x1,x2)是无差异曲线是无差异曲线和预算线的交点,则在红色和预算线的交点,则在红色线段上总能够找到比线段上总能够找到比(x1,x2)更好的点更好的点v无无差异曲线不穿过预算线是否就意味着差异曲线不穿过预算线是否就意味着相切呢?相切呢?v大多数情况下是如此,但存在例外。大多数情况下是如此,但存在例外。v第一种例外:折拗的偏好(拐点解)第一种例外:折拗的偏好(拐点解)v第二种例外:角点解第二种例外:角点解第一种例外:折拗的偏好x2*x2x1x1*无无差异曲线在最差异曲线在最优消费点上没有优消费点上没有切线切线第二种例外:角点解x1x1*x2(,0),),无无差异曲线与预算差异曲线与预算线不相切线不相切x1*如果不考虑折拗偏好和角点解,无差异曲如果不考虑折拗偏好和角点解,无差异曲线与预算线相切是最优选择的线与预算线相切是最优选择的必要条件必要条件。v无无差异曲线与预算线相切是最优选择的差异曲线与预算线相切是最优选择的充分条件吗?充分条件吗?x2最优最优消费束消费束非最优非最优消费束消费束三个三个切点中只有两个最优点。相切是最优的切点中只有两个最优点。相切是最优的必要、非充分条件。必要、非充分条件。注意:最优商品束注意:最优商品束可能不是唯一的。可能不是唯一的。如果无差异曲线是如果无差异曲线是严格凸的,那么在严格凸的,那么在每一条预算线上只每一条预算线上只有一个最优选择。有一个最优选择。5.2 消费者需求v一定价格和收入水平下的商品一定价格和收入水平下的商品1和商品和商品2的最的最优选择,称为消费者的优选择,称为消费者的需求束需求束。v需求函数需求函数是将最优选择即需求数量与不同的是将最优选择即需求数量与不同的价格和收入值联系起来的函数。价格和收入值联系起来的函数。x1(p1,p2,m),x2(p1,p2,m)v不同的偏好下消费者的最优选择不同不同的偏好下消费者的最优选择不同理性约束选择效用u在给定价格和预算情况下的最受偏好消在给定价格和预算情况下的最受偏好消费束称为消费者的一般需求。费束称为消费者的一般需求。u我们用我们用x1*(p1,p2,m)和和 x2*(p1,p2,m)来表来表示一般需求。示一般需求。理性的受约束选择效用u当当 x1*0,x2*0 这样的需求消费束这样的需求消费束称为称为内点内点。u假如购买消费束假如购买消费束(x1*,x2*)花费花费$m,那,那么预算刚好花完。么预算刚好花完。理性的受约束选择效用x1x2x1*x2*(x1*,x2*)是内点是内点(x1*,x2*)在预算线上在预算线上理性的受约束选择效用x1x2x1*x2*(x1*,x2*)是内点是内点(a)(x1*,x2*)在预算线上在预算线上;p1x1*+p2x2*=m。理性的受约束选择效用x1x2x1*x2*(x1*,x2*)是内点是内点(b)(x1*,x2*)点的无差异曲线点的无差异曲线的斜率与预算约束线的斜率的斜率与预算约束线的斜率相等。相等。最优选择-消费者均衡最优选择最优选择(x1*,x2*)满足满足u全部收入都用于消费全部收入都用于消费 u能给其带来最高效用水平能给其带来最高效用水平的消费束的消费束 x1x2x1*x2*理性的受约束选择u(x1*,x2*)满足两个条件满足两个条件:u(a)该点在预算线上该点在预算线上;p1x1*+p2x2*=mu(b)在点在点(x1*,x2*)的预算约束的斜率为的预算约束的斜率为-p1/p2,与无差异曲线在该点的斜率刚好与无差异曲线在该点的斜率刚好相等。相等。从几何上看,消费者均衡条件是边际替代率等于从几何上看,消费者均衡条件是边际替代率等于预算线的斜率,这表明消费者消费两种商品的边预算线的斜率,这表明消费者消费两种商品的边际效用之比必须等于商品的价格之比。际效用之比必须等于商品的价格之比。计算一般需求-以柯布-道格拉斯函数为例u假如消费者有一个柯布假如消费者有一个柯布-道格拉斯的效用道格拉斯的效用函数。函数。计算一般需求-以柯布-道格拉斯函数为例u假如消费者有一个柯布假如消费者有一个柯布-道格拉斯的效用道格拉斯的效用函数。函数。u那么那么计算一般需求-以柯布-道格拉斯函数为例u因此因此 MRS 为为计算一般需求-以柯布-道格拉斯函数为例u因此因此MRS 为为u在在(x1*,x2*)点点,MRS=-p1/p2 因此因此计算一般需求-以柯布-道格拉斯函数为例u因此因此MRS 为为u在在(x1*,x2*)点点,MRS=-p1/p2 因此因此(A)计算一般需求-以柯布-道格拉斯函数为例u(x1*,x2*)点刚好在预算线上点刚好在预算线上(B)计算一般需求-以柯布-道格拉斯函数为例u因此可知因此可知(A)(B)计算一般需求-以柯布-道格拉斯函数为例u因此可知因此可知(A)(B)代入代入计算一般需求-以柯布-道格拉斯函数为例u因此可知因此可知(A)(B)代入代入可得可得可简化为可简化为计算一般需求-以柯布-道格拉斯函数为例计算一般需求-以柯布-道格拉斯函数为例将将x1*代入代入 便有便有计算一般需求-以柯布-道格拉斯函数为例我们得到了柯布我们得到了柯布-道格拉斯效用函数的消费者最道格拉斯效用函数的消费者最优可行消费束。优可行消费束。为为计算一般需求-以柯布-道格拉斯函数为例x1x2理性的受约束选择u当当 x1*0,x2*0 且且 (x1*,x2*)在预算线上,在预算线上,且且 无差异曲线没有结点,一般需求可通无差异曲线没有结点,一般需求可通过解方程过解方程u(a)p1x1*+p2x2*=yu(b)在点在点(x1*,x2*)预算约束线的斜率为预算约束线的斜率为-p1/p2,与在该点的无差异曲线的斜率相等。与在该点的无差异曲线的斜率相等。柯布道格拉斯偏好求:最优选择的需求函数!求:最优选择的需求函数!其其边际替代率为:边际替代率为:u在(x1*,x2*),MRS=-p1/p2 即:(A)(B)加上预算约束:加上预算约束:u具有柯布道格拉斯偏好的消费者在每种商品上花费的货币总是他收入的一个固定份额,其大小由柯布道格拉斯中的指数决定。In trying to“do the best she can given her circumstances”,a consumer choosesa bundle(x1,x2)to maximizeutilityu(x1,x2)subject to the budget constraint.Optimizing MathematicallyFor the typical 2-good consumer problem,this is written formally aswhere the notation“x1,x2”underneath“max”is read as“choose the variables x1 andx2 to maximize”.The function that is being maximized i.e.u(x1,x2)is often referred to as the objective function.This is an example of a constrained optimization problem.Back to GraphsBeginning with an ExampleWell return to this general formulation of the consumers problem but begin with a more concrete example:A consumer faces prices p1=20 and p2=10 and has$200 to spend on the goods x1 and x2.Her tastes can be represented by the Cobb-Douglas utility function.We can then write this consumers constrained optimization problem asSolving the Problem:Method 1One way to approach this is by converting the constrained optimization probleminto an unconstrained optimization problem.This is done by solving the constraint for x2=20 2x1and substituting this into the objective function u(x1,x2)to create a new functionWe have therefore eliminated the constraint by making it part of the objective function and we can thus re-write the problem asSolving the Problem:Method 1To solve for the maximum of a single-variable function,we have to find where the function attains zero slope i.e.where its derivative is zero.We therefore set the derivative of fwith respect to x1 to zeroand solve for x1 to get x1=5.Plugging x1=5 into the budget constraint equation x2=20 2x1and solving for x2,we furthermore get that x2=10.Thus,the optimal bundle for this consumer is(x1,x2)=(5,10).Solving the Problem:Method 2A second way to approach this problem is through the Lagrange Method.Just as in Method 1,the Lagrange Method begins by setting up a new function whose first derivatives will then be set to zero to solve for the optimum.But unlike in Method 1,the constraint will now be an explicit part of this Lagrange Function (x1,x2,l)that(1)begins with the objective function(u(x1,x2)and then(2)adds the constraint set to zero and multiplied by the new variable l (which is called the Lagrange multiplier).For our problem,this gives usobjective functionconstraint set to zeroLagrange functionLagrange multiplierSolving the Problem:Method 2Just as we set the derivative of the new f(x1)function to zero to find the optimum in Method 1,we now set the partial derivatives of the Lagrange function(with respect to each of the variables)equal to zero:Notice that the last of these is simply the budget constraint so we typically take the partial derivatives with respect to the choice variables(x1,x2)and simply remember that the budget constraint is the third equation.These equations together are known as the first order conditions.Solving these for x1 andx2usuallygives the optimum.Solving the Problem:Method 2Adding the l terms to both sides of each of these equations,we getandand dividing them by each other,we getA number of terms can then be cancelled leaving us with Subtracting exponents in the denominator from exponents in the numerator then reduces this to or simply(MRS)for Cobb Douglas p1 p2So the first two first order conditions reduce to the simple familiar condition that Solving the Problem:Method 2We now only have combine this with the thirdfirst order condition which is just the budget line equation so solve for the optimum.In particular,we write the result from the first twofirst order conditions with x1 on the left-hand side;i.e.x2=2x1.We then substitute this into the budget equation and solve for x1 to get x1=5.Substituting this back into x2=2x1 then gives us x2=10.We therefore get the same optimal bundle as we did using Method 1;the bundle(x1,x2)=(5,10).Solving the Problem:Method 3Method 1eliminated the constraint by substituting it into the objective function before setting the first derivative to zero.Method 2 the Lagrange Method instead began with the Lagrange function before setting the first(partial)derivatives to zero.Both of these methods use mathematical techniques without appealing to the economic intuitions from our graphical analysis.Method 3departs from this by employing economic intuition as a shortcut.The simple economic intuition it employs is that,at any interior solution,.Solving the Problem:Method 3We know from our graphs that this condition always holds at any interior solutions in the consumer model.We can therefore begin with our utility function and deriveWhen p1=20 and p2=10,the intuitive tangency condition then impliesSolving the Problem:Method 3This is precisely the equation we derived in the Lagrange Method from the first 2 first order conditions.Method 3 then proceeds precisely as the Lagrange Method did from this step by 1.Solving this equation for x2=2x1,2.Substituting it into the budget constraint to derive x1=5,and then 3.Substituting this back into x2=2x1 to get x2=10.We can also see the intuition for this by recognizing that our example is exactly the one graphed in the first graph of the Chapter:Our Cobb-Douglas tastes are homothetic,and the ray along which MRS=2 is x2=2x1.The optimum occurs where this ray intersects the budget,which is exactly what we find in Step 2.Equivalence between Methods 2 and 3The equivalence between the Lagrange Method and Method 3 can be shown more generally by writing the Lagrange function asand the first 2 first order conditions asandAdding the l terms to both sides of each equation and then dividing the equations by one another,we get Multiply both sides by 1By definitionMethod 3 therefore uses economic intuition to take a short-cut in Method 2.Back to Graphs理性的受约束选择u假如假如x1*=0?u或者或者x2*=0,情况会怎么变化,情况会怎么变化?u假如假如x1*=0 或者或者 x2*=0,那么在既定约那么在既定约束限制下效用最大化问题的一般需求的束限制下效用最大化问题的一般需求的解解(x1*,x2*)为为边角解边角解(角点解角点解)。用图形找最优选择:用图形找最优选择:绘制出无差异曲线和绘制出无差异曲线和预算线,然后找出预算线与最高无差异预算线,然后找出预算线与最高无差异曲线的曲线的接触接触点,该点,该接触接触点的商品束组合点的商品束组合就是最优选择。就是最优选择。边角解的例子 完全替代品的情况x1x2MRS=-1边角解的例子 完全替代品的情况x1x2MRS=-1斜率斜率=-p1/p2 且且 p1 p2.边角解的例子 完全替代品的情况x1x2MRS=-1斜率斜率=-p1/p2 且且 p1 p2.边角解的例子 完全替代品的情况x1x2MRS=-1斜率斜率=-p1/p2 且且 p1 p2.边角解的例子 完全替代品的情况x1x2MRS=-1斜率斜率=-p1/p2 且且 p1 p2.边角解的例子 完全替代品的情况当效用函数为当效用函数为U(x1,x2)=x1+x2,最优可行消费最优可行消费束为束为(x1*,x2*)在该点在该点且且如果如果p1 p2.边角解的例子 完全替代品的情况x1x2MRS=-1斜率斜率=-p1/p2 且且 p1=p2.边角解的例子 完全替代品的情况x1x2当当p1=p2,预算约束线上的所,预算约束线上的所有消费束都是受到同等最优偏有消费束都是受到同等最优偏好的可行消费束。好的可行消费束。当当p1 p2介于0和m/P1之间的任何数量当当p1 p2当当p1 p20 (二)完全替代品(角点解)(二)完全替代品(角点解)x2无差异曲线无差异曲线预算线预算线x1x2无差异曲线无差异曲线预算线预算线x1无差异曲线无差异曲线预算线预算线小结小结当边际替代率的绝对当边际替代率的绝对值大于预算线的斜率值大于预算线的斜率的绝对值时,最优选的绝对值时,最优选择位于横轴;反之,择位于横轴;反之,最优选择处于纵轴。最优选择处于纵轴。如果边际替代率的斜如果边际替代率的斜率等于预算线的斜率,率等于预算线的斜率,将不存在唯一的最优将不存在唯一的最优选择。选择。边角解的例子 非凸性偏好的情况x1x2更好更好边角解的例子 非凸性偏好的情况x1x2边角解的例子 非凸性偏好的情况x1x2哪点是最优可行消费束?哪点是最优可行消费束?边角解的例子 非凸性偏好的情况x1x2最优可行消费束最优可行消费束x1x2最优选择最优选择ZX注意:切点不是最优偏好可行消费束注意:切点不是最优偏好可行消费束拐点解的例子 完全替代品的情况x1x2U(x1,x2)=minax1,x2x2=ax1拐点解的例子 完全替代品的情况x1x2MRS=0U(x1,x2)=minax1,x2x2=ax1拐点解的例子 完全替代品的情况x1x2MRS=-MRS=0U(x1,x2)=minax1,x2x2=ax1拐点解的例子 完全替代品的情况x1x2MRS=-MRS=0MRS 在该点没有定义在该点没有定义U(x1,x2)=minax1,x2x2=ax1拐点解的例子 完全替代品的情况x1x2U(x1,x2)=minax1,x2x2=ax1拐点解的例子 完全替代品的情况x1x2U(x1,x2)=minax1,x2x2=ax1哪点是最优可行消费束哪点是最优可行消费束?拐点解的例子 完全替代品的情况x1x2U(x1,x2)=minax1,x2x2=ax1最优可行消费束最优可行消费束拐点解的例子 完全替代品的情况x1x2U(x1,x2)=minax1,x2x2=ax1x1*x2*拐点解的例子 完全替代品的情况x1x2U(x1,x2)=minax1,x2x2=ax1x1*x2*(a)p1x1*+p2x2*=m拐点解的例子 完全替代品的情况x1x2U(x1,x2)=minax1,x2x2=ax1x1*x2*(a)p1x1*+p2x2*=m(b)x2*=ax1*拐点解的例子 完全替代品的情况(a)p1x1*+p2x2*=m;(b)x2*=ax1*.拐点解的例子 完全替代品的情况(a)p1x1*+p2x2*=m;(b)x2*=ax1*.将将(b)中的中的 x2*代入代入(a)式中得式中得 p1x1*+p2ax1*=m拐点解的例子 完全替代品的情况(a)p1x1*+p2x2*=m;(b)x2*=ax1*.将将(b)中的中的 x2*代入代入(a)式中得式中得 p1x1*+p2ax1*=m从而可得从而可得拐点解的例子 完全替代品的情况(a)p1x1*+p2x2*=m;(b)x2*=ax1*.将将(b)中的中的 x2*代入代入(a)式中得式中得 p1x1*+p2ax1*=m从而可得从而可得拐点解的例子 完全替代品的情况(a)p1x1*+p2x2*=m;(b)x2*=ax1*.将将(b)中的中的 x2*代入代入(a)式中得式中得 p1x1*+p2ax1*=m从而可得从而可得一个包含一个单位商品一个包含一个单位商品1和一个单位商品和一个单位商品2的消的消费束的成本为费束的成本为p1+ap2;m/(p1+ap2)这样的消费束是消费者可承受的。这样的消费束是消费者可承受的。拐点解的例子 完全替代品的情况x1x2U(x1,x2)=minax1,x2x2=ax1中性物品中性物品好商品好商品中性中性商品商品x2*x1*x1*(,)(,)=(m/P1,0)好商品好商品好商品好商品中性商品中性商品中性商品中性商品x1*(,)(,)=(0,m/P2)x2*x1*劣等品劣等品x1x2x2*x1*x1*(,)(,)=(m/P1,0)离散商品离散商品X2X101234最最优选择优选择预算线预算线需求零单位需求零单位离散商品离散商品X2X101234最最优选择优选择需求需求1单位单位x1x2Better凹形偏好凹形偏好x1x2x1x2哪个是最哪个是最优消费束?优消费束?x1x2最最优选择优选择注意:切点解注意:切点解X不是最优消费点不是最优消费点XZPitfall 1:ExampleSuppose our consumer who faces prices p1=20 and p2=10 and has$200 to spend now has quasilinear tastes that can be described by the functionPitfall 1:ExampleSuppose our consumer who faces prices p1=20 and p2=10 and has$200 to spend now has quasilinear tastes that can be described by the functionThe MRS for this utility function is a/x1,and,using our Method 3,we can then conclude that which we can solve for x1=a/2.Plugging this into the budget constraint and solving for x2,we furthermore get If a 0 and x2 0,and we are at an interior solution.But if a a 20,x2 20,the true“best bundle”lies at the corner of the budget where x2=0(and x1=10).Pitfall 1:ExampleWhen a=10,for instance,our solution methods then find the optimal bundle to bex1=5 and x2=10,an interior solution properly picked up by the mathematical technique.Pitfall 1:ExampleBut when a=25,the solution method provides the mathematically meaningful“interior solution”B:x1=12.5 and x2=5.The economicslly meaningful“best bundle”,however,is the corner solution A:x1=10 and x2=0.Choosing Taxes(税收类型的选择)v两种类型的税收:从量税(a quantity tax)和所得税(an income tax)。v如果政府想增加一定数量的财政收入,是征收从量税较好还是征收所得税较好呢?征收从量税v征税前的预算约束:v如果对商品1的消费征收税率为 t的从量税,那么新的预算约束为:v因此对某商品征收从量税会提高该商品的价格。征收从量税v最优选择 必须满足 预算约束v征税所获得的财政收入为所得税v现在考虑使政府增加相同数量收入的所得税的情况。v 此时的预算约束为 或所得税v可以证明,包含所得税的预算线必定经过点 。因为有所得税和从量税初始选择含所得税的最优选择含从量税的最优选择x2*X1*所得税和从量税v因此,在政府向消费者征收相同数量的税收的条件下,消费者在课征所得税的境况,好于他在课征从量税时的情况。Summary(小结):求消费者最优选择的三个步骤:vStep 1:画出预算集;vStep 2:画出无差异曲线;vStep 3:找出最优选择的点,并计算求解。