(精品)25.1在重复试验中观察不确定现象 (2).ppt
-
资源ID:82470720
资源大小:422KB
全文页数:12页
- 资源格式: PPT
下载积分:16金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
(精品)25.1在重复试验中观察不确定现象 (2).ppt
在重复试验中观察不确定现象在重复试验中观察不确定现象1/12/20231.1.引入引入问题1:抽签排序5名同学参加演讲比赛,以抽签的方式决定每个人的出场顺序。签筒中有5支形状、大小相同的纸签,小军首先抽签,他在看不到纸签上数字的情况下任意地取一根纸签。请考虑以下问题:(1)抽到的序号有几种可能的结果?(2)抽到的序号小于6吗?(3)抽到的序号是0吗?(4)抽到的序号是1吗?1.1.必然事件必然事件在一定条件下重复试验必然发生的事件在一定条件下重复试验必然发生的事件2.2.不可能事件不可能事件在一定条件下在一定条件下重复试验重复试验不可能发生的事件不可能发生的事件3.3.随机事件随机事件在一定条件下在一定条件下重复试验重复试验可能发生也可能不发生的事件可能发生也可能不发生的事件1/12/2023陌生概念活动:抛掷一枚质地均匀的硬币,(投掷一次)(1)结果有几种可能?(2)投掷前能否确定是哪一面向上?(3)哪种结果的可能性更大?在抛掷一枚质地均匀的硬币时,尽管事先不能确定结果是正面向上还是反面向上,但直觉告诉我们这两个随机事件发生的可能性相同,各占一半。猜想:抛掷一枚质地均匀的硬币,正面向上和反面向上的可能性相同,各占一半。这种猜想是否正确呢?历史上,有数学家做过成千上万次抛掷硬币的试验,从中我们可以看到他们对科学的严谨态度和求实精神。结果如下:实验者抛掷次数nn正面频数mm正面频率m/nm/n棣莫弗2 0481 0610.518布丰4 0402 0480.5069费勒10 0004 9790.4979皮尔逊12 0006 0190.5016皮尔逊24 00012 0120.5005提问提问:观察试验结果,在这些试验中,正面向上的频率相等吗?随着试验次数的增加,正面向上的频率有怎样的规律?小结小结 从上表可以发现,在重复抛掷一枚质地从上表可以发现,在重复抛掷一枚质地均匀的硬币时,正面向上的频率在均匀的硬币时,正面向上的频率在0.5附附近波动。并且随着试验次数的增加,一般近波动。并且随着试验次数的增加,一般情况下频率会稳定在情况下频率会稳定在0.5附近,波动幅度附近,波动幅度越来越小。越来越小。一般地,对于一个随机事件一般地,对于一个随机事件A A,我们,我们把刻画其发生大小的数值,称为随机事件把刻画其发生大小的数值,称为随机事件A A发生的发生的概率。概率。记为记为P P(A A)概率概率1/12/2023 在大量重复试验中,如果事件在大量重复试验中,如果事件A发生的发生的频率频率m/n会稳定在某个常数会稳定在某个常数 p 附近,那么这附近,那么这个常数个常数 p 就叫做事件就叫做事件A的概率。的概率。记为:记为:P(A)=p.想一想?想一想?如果再做一组抛掷30000次的试验,事先能确定正面向上的频率吗?但是能根据概率估计出频率大概在?提问:从中你发现频率和概率有什么关系?随机现象对于个别试验而言无法预知结果,频率也会随着试验次数的改变而变化;但在相同条件下进行大量重复试验时,却又呈现出一种规律性,因而概率是一个客观常数。可以说,频率是概率的近似值,概率是频率的稳定值。例题解析例题解析1/12/20231.在抛掷硬币的试验中,对于结论P(正面向上)=0.5,判断以下解释是否正确:(1)对于每一次试验,有一半的可能是正面向上。(2)抛2次则必有1次是正面向上。(3)抛掷50次,如果大部分情况是正面向上的,则继续抛掷时反面向上的概率更大。想一想:想一想:发生了的事情是否概率就大?没发生的事情是否概率就小?反之,概率大的事情是否一定发生?概率小的事情是否一定不发生?课堂小结课堂小结1/12/20231.现实生活中存在大量的随机事件,可能发生也可能不发生,事先无法预料;2.概率是用来描述事件发生的可能性大小;但是概率大的事件不一定发生,概率小的事件不一定不发生;3.注意体会频率与概率的区别和联系。作业:习题中相关练习