欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《函数的单调性》教学设计(精品).pdf

    • 资源ID:82638274       资源大小:130.90KB        全文页数:6页
    • 资源格式: PDF        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《函数的单调性》教学设计(精品).pdf

    函数的单调性(一)教学目标1知识与技能(1)理解函数单调性的定义、明确增函数、减函数的图象特征.(2)能利用函数图象划分函数的单调区间,并能利用定义进行证明.2过程与方法由一元一次函数、一元二次函数的图象,让学生从图象获得“上升”“下降”的整体认识.利用函数对应的表格,用自然语言描述图象特征“上升”“下降”最后运用数学符号将自然语言的描述提升到形式化的定义,从而构造函数单调性的概念.3情感、态度与价格观在形与数的结合中感知数学的内在美,在图形语言、自然语言、数学语言的转化中感知数学的严谨美.(二)教学重点和难点重点:理解增函数、减函数的概念;难点:单调性概念的形成与应用.(三)教学方法讨论式教学法.在老师的引导下,学生在回顾旧知,细心观察、认真分析、严谨论证的学习过程中生疑与析疑,合作与交流,归纳与总结的过程中获得新知,从而形成概念,掌握方法.(四)教学过程教学环节教学内容师生互动设计意图提出问题观察一次函数 f(x)=x 的图象:函数 f (x)=x 的图象特征由左到右是上升的.师:引导学生观察图象的升降.生:看图.并说出自己对图象的直观认识.师:函数值是由自变量的增大而增大,或由自变量的增大而减小,这种变化规律即函数的单调性.在函数图象的观察中获取函数单调性的直观认识.y x 1 1 O 引入深题观察二次函数 f (x)=x2的图象:函数 f (x)=x2在 y 轴左侧是下降的,在 y 轴右侧是上升的.列表:x 4 3 2 1 0 f(x)=x216 9 4 1 0 1 2 3 4 1 4 9 16 x(,0 时,x 增大,f (x)减少,图象下降.x(0,+)时,x 增大,f(x)也增大,图象上升.师:不同函数,其图象上升、下降规律不同.且同一函数在不同区间上的变化规律也不同.这是“形”的方面,从“数”的方面如何反映.生:函数作图时列表描点过程中,从列表的数据变化可知自变量由 4 到 0 变化,函数值随着变小;而自变量由0 到 4变化,函数值随着自变量的变大而变大.师:表格数值变化的一般规随是:自变量 x 增大,函数值 y也增大,函数图象上升,称函数为增函数;自变量x 增大,函数值 y 反而减少,函数图象下降.称函数为减函数.体会同一函数在不同区间上的变化差异.引导学生从“形变”过渡到“数变”.从定性分析到定量分析.形成概念函数单调性的概念一般地,设函数 f (x)的定义域为I:如果对于定义域 I 内的某个区间 D上的任意两个自变量的值x1,x2,当 x1x2时,都有 f(x1)f(x2),那么就说函数 f (x)在区间 D上是增函数(increasing function);师:增函数、减函数的函数值随自变量的变化而变化怎么用数学符号表示呢?师生合作:对于函数 f(x)=x2在区间(0,+)上.任取 x1、x2.若 x1x2,则 f (x1)f (x2),即 x12x22.师:称 f (x)=x2在(0,+)上为增函数.由实例探究规律从而获得定义的数学符号表示.O x y 如果对于定义域 I 内某个区间 D上的任意两个自变量的值x1、x2,当x1x2时,都有 f (x1)f(x2),那么就说函数 f (x)在区间 D上是减函数(decreasing function).应用举例例 1 如图是定义在区间 5,5上的函数 y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?训练题 1:(1)请根据下图描述某装配线的生产率与生产线上工人数量间的关系.师:投影例 1.生:合作交流完成例1.师:引导学生完成教材P36练习的第 1 题、第 2 题.师:投影训练题 1 生:学生通过合作交流自主完成.例 1【解】:y=f (x)的单调区间有 5,2),2,1),1,3),3,5.其中 y=f(x)在区间 5,2),1,3)上是减函数,在区间 2,1),3,5 上是增函数.训练题 1 答案:(1)在一定范围内,生产效率随着工人数的增加而提高,当工人数达到某掌握利用图象划分函数单调区间的方法.掌握单调性证明步骤及原理.内化定义,强化划分单调区间的方法.x x1 x2 Oyf(x1)f(x2)y=f(x)x x1 x2 Oyf(x1)f(x2)y=f(x)(2)整个上午(8001200)天气越来越暖,中午时分(12001300)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(1800)才又开始转凉.画出这一天 8002000 期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.(3)根据下图说出函数单调区间,以及在每一单调区间上,函数是增函数还是减函数.例 2 物理学中的玻意耳定律kpV(k 为正常数)告诉我们,对于一定量的气体,当其体积 V减小时,压强 p 将增大.试用函数的单调性证明之.训练题 2:证明函数 f (x)=2x+1 在 R上是减函数.个数量时,生产效率达到最大值,而超过这个数量时,生产效率又随着工人的增加而降低.由此可见,并非是工人越多,生产效率就越高.(2)增区间为 8,12,13,18;减区间为:12,13,18,20.(3)函数在 1,0 上是减函数,在0,2 上是增函数,在2,4 上是减函数,在 4,5是增函数.师:打出例 2,请学生阐明应用定义证明(判定)并总结证明单调性的基本步骤.生:学生代表板书证明过程,教师点评.例 2 分析:按题意,只要证明函数kpV在区间(0,+)上是减函数即可.证明:根据单调性的定义,设V1,V2是定义域(0,+)上的任意两个实数,且V1V2,即21121212()()VVkkp Vp VkVVVV.由 V1,V2(0,+),得 V1V20.由 V1V2,得 V2 V10.强化记题步骤与格式.又 k0,于是p(V1)p(V2)0,即p(V1)p(V2).所以,函数kpV,V,+)是减函数,也就是说,当体积 V减小时,压强 p 将增大.师:投影训练题 2 生:自主完成训练题 2 证明:任取 x1,x2R,且 x1x2,因为 f (x1)f(x2)=2(x2 x1)0,即 f (x1)f (x2),所以 f (x)=2x+1 在 R上是减函数.归纳小结1体会函数单调性概念的形成过程.2单调性定义.3利用图象划分单调区间.4利用定义证明单调性步骤.师生合作:回顾单调性概念的形式与发展.师:阐述单调性的意义与作用.反思回顾整理知识,提升能力.课后练习1.3 第一课时习案学生独立完成巩固知识培养能力备选例题:例 1 证明函数 f (x)=3 x+2 在 R上是增函数.【证明】设任意x1、x2R,且 x1x2,则 f(x1)f (x2)=(3x1+2)(3 x2+2)=3(x1x2).由 x1x2得 x1 x20.f (x1)f (x2)0,即 f (x1)f (x2).f (x)=3 x+2 在 R上是增函数.例 2 证明函数 f (x)=1x在(0,+)上是减函数.【证明】设任意x1、x2,+)且 x1x2,则 f (x1)f (x2)=21121211xxxxx x,由 x1,x2,+)得,x1x20,又 x1x2,得 x2 x10,f (x1)f (x2)0,即 f (x1)f (x2).f (x)=1x在(0,+)上是减函数.

    注意事项

    本文(《函数的单调性》教学设计(精品).pdf)为本站会员(索****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开