欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    1.4.1正余弦函数图象.ppt

    • 资源ID:82664585       资源大小:2.22MB        全文页数:21页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    1.4.1正余弦函数图象.ppt

    1.4.1 1.4.1 正弦函数、余弦函数的图像正弦函数、余弦函数的图像杜静文杜静文定义:定义:任意给定的一个实数任意给定的一个实数x,x,有唯一确定的值有唯一确定的值sinxsinx与之对应。由这个法则所确定的函数与之对应。由这个法则所确定的函数 y=y=sinxsinx叫做叫做正弦函数,正弦函数,y=y=cosxcosx叫做叫做余弦函数,余弦函数,二者二者定义域为定义域为R R。实实 数数正正 弦弦 值值 角角一、正弦函数的定义一、正弦函数的定义:1.能否用能否用描点法作函数描点法作函数 的的图象图象?只要能够确定该图象上的点只要能够确定该图象上的点 的坐标,就可以的坐标,就可以用描点法作出函数图象。而该图象上点的坐标可通过用描点法作出函数图象。而该图象上点的坐标可通过查三角函数表得到。查三角函数表得到。遇到一个新的函数遇到一个新的函数,画出它的图象画出它的图象,通过观察图象获得对它性质的直观通过观察图象获得对它性质的直观认识认识,是研究函数的基本方法是研究函数的基本方法.我们可以用单位圆中的三角函数线来刻我们可以用单位圆中的三角函数线来刻画三角函数,是否可以用它来帮助作三画三角函数,是否可以用它来帮助作三角函数的图象?角函数的图象?如何精确的描出点如何精确的描出点?想一想?请同学生们回忆一请同学生们回忆一下什么是正弦线?下什么是正弦线?什么是余弦线?什么是余弦线?-1PMA(1,0)T注意:注意:三角三角函数函数线是是有有向向线段段!yx xO正弦线正弦线MPsin cos 余弦线余弦线OMO1 O yx-11描图:用光滑曲线描图:用光滑曲线 将这些正弦线的终将这些正弦线的终点连结起来点连结起来AB2、把、把x轴上轴上02的线段的线段12等份,得到等份,得到12个点的横坐标个点的横坐标.1、把单位圆、把单位圆12等分,并放置于直角坐标系中等分,并放置于直角坐标系中y轴的左侧轴的左侧.3、把单位圆周上、把单位圆周上12个点所对的角个点所对的角x的的正弦线正弦线MP向右平移,向右平移,使使M点与点与X轴上的点轴上的点x重合,即可得到重合,即可得到12个点个点.如何利用三角函数线画如何利用三角函数线画y=y=sinxsinx,x x 0,20,2 的图象的图象?学习探究学习探究:横轴五点排均匀,上下顶点圆滑行;横轴五点排均匀,上下顶点圆滑行;上凸下凹形相似,游走酷似波浪行上凸下凹形相似,游走酷似波浪行.x6 yo-12345-2-3-41y=sinx x 0,2 y=sinx x R正弦曲正弦曲线yxo1-1学习探究学习探究:如何由如何由 的图象得到的图象得到 的图象的图象y=sinx x 0,2 y=sinx x R由部分到整体y=sinx x0,2y=sinx xR sin(x+2k)=sinx,kZ 利用图象平移利用图象平移x6yo-12345-2-3-41余弦函数余弦函数的图象的图象 正弦函数正弦函数的图象的图象 x6yo-12345-2-3-41y=cosx与与 y=sin(x+),x R图象相图象相同同余弦曲余弦曲线正弦曲正弦曲线形状完全一形状完全一样只是位置不同只是位置不同合作探究合作探究你能根据诱导公式,以正弦函数的图象为基础,通你能根据诱导公式,以正弦函数的图象为基础,通过适当的图形变换得到余弦函数的图象吗?过适当的图形变换得到余弦函数的图象吗?由未知向已知转由未知向已知转化化由诱导公式由诱导公式y=,将正弦函数的图象向左平移将正弦函数的图象向左平移 个单位即可得到余弦函数的图象个单位即可得到余弦函数的图象.在精确度要求不太高时,在精确度要求不太高时,如何快捷地如何快捷地作作出出正弦函数正弦函数的图象呢?的图象呢?在作出正弦函数的图象时,应抓住哪些在作出正弦函数的图象时,应抓住哪些关键点关键点?思考?思考?与与x轴的轴的交点交点图象的图象的最高点最高点图象的图象的最低点最低点与与x轴的轴的交点交点图象的图象的最高点最高点图象的图象的最低点最低点简图作法简图作法(五点作图法五点作图法)(1)列表列表(列出对图象形状起关键作用的五点坐标列出对图象形状起关键作用的五点坐标)(2)描点描点(定出五个关键点定出五个关键点)(3)连线连线(用光滑的曲线顺次连结五个点用光滑的曲线顺次连结五个点)五五点点作作图图法法描点作图描点作图-例例1画出下列函数的简图画出下列函数的简图(1)y=sinx+1,x0,2(2)y=cosx,x0,2列表列表解解:(1)-(2)10-101-1010-1典型例题典型例题五点法作图五点法作图(2)(2)描点描点(1)(1)列表列表(3)(3)连线连线思考:能否从图象变换的角度出思考:能否从图象变换的角度出发得到(发得到(1 1)()(2 2)的图象?)的图象?1.用五点法画出y=sinx+2,x0,的简图;2.用五点法画出y=sinx-1,x0,2的简图;xyo-112 2.1.1.用五点法画出用五点法画出y=sinx+2,x0y=sinx+2,x0,的简图的简图y=sinx+2,x 0,xyo-112 2.2.2.用五点法画出用五点法画出y=sinx-1,x0y=sinx-1,x0,的简图的简图y=sinx-1,x0,列表列表(2)描点作图描点作图解解:(1)x0 2 0 2 0 -2 0Y2X0y=2sinx y=2sinx1y=sinx3.3.用五点法画出用五点法画出y=2sinx,x0y=2sinx,x0,的简图的简图o1yx-12o1yx-12o1yx-12o1yx-12D的大致图象为()x0,24.函数y=1-cosx,1.正弦曲线、余弦曲线作法正弦曲线、余弦曲线作法几何作图法(三角函数线)几何作图法(三角函数线)描点法(五点法)描点法(五点法)图象变换法图象变换法yxo1-1y=sinx,x 0,2 y=cosx,x 0,2 4.注意与诱导公式、三角函数线等知识的联系注意与诱导公式、三角函数线等知识的联系5.巩固图象变换的规律:巩固图象变换的规律:3.正弦曲线和余弦曲线之间的区别与联系正弦曲线和余弦曲线之间的区别与联系2.2.了了解利用单位圆中的三角函数线作正余弦函数图象解利用单位圆中的三角函数线作正余弦函数图象对自变量对自变量x x“左加右减左加右减”,对函数值对函数值f(xf(x)“上加下减上加下减”.2.2.用五点法用五点法画出画出y=y=coscos(-x),x0 x),x0,的简图的简图.1.1.用五点法用五点法画出画出y=y=sin(xsin(x-),x0 ),x0,的简图的简图;

    注意事项

    本文(1.4.1正余弦函数图象.ppt)为本站会员(赵**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开