2.1.2椭圆的简单几何性质(2)58580.ppt
2.1.2椭圆的简椭圆的简单几何性质单几何性质(2)高二数学高二数学 选修选修1-1 第二章第二章 圆锥曲线与方程圆锥曲线与方程1标准方程标准方程范围范围对称性对称性 顶点坐标顶点坐标焦点坐标焦点坐标半轴长半轴长离心率离心率 a a、b b、c c的关的关系系|x|a,|y|b关于关于x x轴、轴、y y轴成轴对称;关轴成轴对称;关于原点成中心对称于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为长半轴长为a a,短短半轴长为半轴长为b.b.ababa2=b2+c2|x|b,|y|a同前同前(b,0)、(-b,0)、(0,a)、(0,-a)(0,c)、(0,-c)同前同前同前同前同前同前2复习练习:复习练习:1.1.椭圆的长短轴之和为椭圆的长短轴之和为1818,焦距为,焦距为6 6,则椭圆的,则椭圆的标准方程为(标准方程为()2、下列方程所表示的曲线中,关于、下列方程所表示的曲线中,关于x轴和轴和y 轴轴都对称的是(都对称的是()A、x2=4y B、x2+2xy+y=0 C、x2-4y2=xD、9x2+y2=4CD3练习练习1、若椭圆的焦距长等于它的短轴长,则其离心率为、若椭圆的焦距长等于它的短轴长,则其离心率为 。2、若椭圆的两个焦点及一个短轴端点构成正三角形,、若椭圆的两个焦点及一个短轴端点构成正三角形,则其离心率为则其离心率为 。3、若椭圆的、若椭圆的 的两个焦点把长轴分成三等分,则其的两个焦点把长轴分成三等分,则其离心率为离心率为 。44、若某个椭圆的长轴、短轴、焦距依次成等差数列,、若某个椭圆的长轴、短轴、焦距依次成等差数列,则其离心率则其离心率e=_(a,0)a(0,b)b(-a,0)a+c(a,0)a-c6、5、以椭圆的焦距为直径并过两焦点的圆,交椭圆于、以椭圆的焦距为直径并过两焦点的圆,交椭圆于四个不同的点,顺次连接这四个点和两个焦点恰好组四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率成一个正六边形,那么这个椭圆的离心率 。5例例2求适合下列条件的椭圆的标准方程求适合下列条件的椭圆的标准方程经过点经过点P(3,0)、Q(0,2);长轴长等于长轴长等于20,离心率,离心率3/5。一焦点将长轴分成一焦点将长轴分成:的两部分的两部分,且经过点且经过点解:解:方法一:方法一:设方程为设方程为mx2ny21(m0,n0,mn),),注注:待定系数法求椭圆标准方程的步骤:待定系数法求椭圆标准方程的步骤:定位;定位;定量定量题型二:利用椭圆的几何性质求标准方程题型二:利用椭圆的几何性质求标准方程将点的坐标方程,求出将点的坐标方程,求出m1/9,n1/4。6例例2求适合下列条件的椭圆的标准方程求适合下列条件的椭圆的标准方程经过点经过点P(3,0)、Q(0,2);长轴长等于长轴长等于20,离心率,离心率3/5。一焦点将长轴分成一焦点将长轴分成:的两部分的两部分,且经过点且经过点解:解:(1)方法二:利用椭圆的几何性质方法二:利用椭圆的几何性质 注注:待定系数法求椭圆标准方程的步骤:待定系数法求椭圆标准方程的步骤:定位;定位;定量定量题型二:利用椭圆的几何性质求标准方程题型二:利用椭圆的几何性质求标准方程以坐标轴为对称轴的椭圆与坐标轴的以坐标轴为对称轴的椭圆与坐标轴的交点就是椭圆的顶点,交点就是椭圆的顶点,于是焦点在于是焦点在x轴上,且点轴上,且点P、Q分别是分别是椭圆长轴与短轴的一个端点,椭圆长轴与短轴的一个端点,故故a3,b2,所以椭圆的标准方程为,所以椭圆的标准方程为 7例例2求适合下列条件的椭圆的标准方程求适合下列条件的椭圆的标准方程经过点经过点P(3,0)、Q(0,2);长轴长等于长轴长等于20,离心率,离心率3/5。一焦点将长轴分成一焦点将长轴分成:的两部分的两部分,且经过点且经过点注注:待定系数法求椭圆标准方程的步骤:待定系数法求椭圆标准方程的步骤:定位;定位;定量定量题型二:利用椭圆的几何性质求标准方程题型二:利用椭圆的几何性质求标准方程8例例2求适合下列条件的椭圆的标准方程求适合下列条件的椭圆的标准方程经过点经过点P(3,0)、Q(0,2);长轴长等于长轴长等于20,离心率,离心率3/5。一焦点将长轴分成一焦点将长轴分成:的两部分的两部分,且经过点且经过点题型二:利用椭圆的几何性质求标准方程题型二:利用椭圆的几何性质求标准方程9练习:已知椭圆的中心在原点,焦点在坐标练习:已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点轴上,长轴是短轴的三倍,且椭圆经过点P P(3 3,0 0),求椭圆的方程。),求椭圆的方程。分类讨论分类讨论的数学思想的数学思想10例例5 如图,一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕如图,一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口BAC是椭圆的一部分,灯丝位于椭圆的一个焦点是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一上,片门位于另一个焦点个焦点F2上上,由椭圆一个焦点由椭圆一个焦点F1出发的光线,经过旋转椭圆面反出发的光线,经过旋转椭圆面反射后集中到另一个焦点射后集中到另一个焦点F2.解:建立如图所示的直角坐标系,解:建立如图所示的直角坐标系,设所求椭圆方程为设所求椭圆方程为yF2F1xoBCA11所以,点所以,点M的轨迹是长轴、短轴长分别为的轨迹是长轴、短轴长分别为10、6的椭圆。的椭圆。FlxoyMHd14FFlIxoy 由探究可知,当点由探究可知,当点M与一个定点的距离和它到一条定直与一个定点的距离和它到一条定直线的距离线的距离 的比是常数的比是常数 时,这个点的轨时,这个点的轨迹迹 就是椭圆,定点是椭圆的焦点,定直线叫做就是椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线椭圆的准线,常,常数数e是椭圆的离心率。是椭圆的离心率。(定点不在定直线上)定点不在定直线上)对于椭圆对于椭圆 ,相应于焦点,相应于焦点F(c,0)准线方程是准线方程是 ,根据椭圆的对称性,相应于根据椭圆的对称性,相应于焦点焦点F(-c.0)准线方程是准线方程是 ,所以椭圆有两条准线。所以椭圆有两条准线。15例例7.解:解:16思考上面探究问题,并回答下列问题:思考上面探究问题,并回答下列问题:探究:(1)用坐标法如何求出其)用坐标法如何求出其轨迹方程轨迹方程,并说出轨迹,并说出轨迹(2)给椭圆下一个新的定义)给椭圆下一个新的定义17探究探究、点、点M(x,y)与定点与定点F(c,0)的距离和它到定直线的距离和它到定直线l:x=a2/c 的距离的比是常数的距离的比是常数c/a(ac0),求点求点M 的轨迹。的轨迹。yFFlIxoP=M|由此得由此得将上式两边平方,并化简,得将上式两边平方,并化简,得设设 a2-c2=b2,就可化成就可化成这是椭圆的标准方程,所以点这是椭圆的标准方程,所以点M的轨迹是长轴、的轨迹是长轴、短轴分别为短轴分别为2a,2b 的椭圆的椭圆M解:设解:设 d是是M到直线到直线l 的距离,根的距离,根据题意,所求轨迹就是集合据题意,所求轨迹就是集合18椭圆的第一定义与第二定义是相呼应的。椭圆的第一定义与第二定义是相呼应的。定义定义 1图图 形形定义定义 2平面内与平面内与19由椭圆的第二定义可得到椭圆的几何性质如下:由椭圆的第二定义可得到椭圆的几何性质如下:20练练 习习 (ab0)左焦点为)左焦点为F1,右焦点为,右焦点为F2,P0(x0,y0)为椭圆上一点,)为椭圆上一点,则则|PF1|=a+ex0,|PF2|=a-ex0。其中其中|PF1|、|PF2|叫焦半径叫焦半径.(ab0)下焦点为)下焦点为F1,上焦点为,上焦点为F2,P0(x0,y0)为椭圆上一点,)为椭圆上一点,则则|PF1|=a+ey0,|PF2|=a-ey0。其中其中|PF1|、|PF2|叫焦半径叫焦半径.说明:说明:PF1F2XYO21焦半径公式焦半径公式 该公式的记忆方法为该公式的记忆方法为左加右减左加右减”,即在,即在a与与ex0之之间,间,如果是左焦半径则用加号如果是左焦半径则用加号“+连接,如果是右焦半径用连接,如果是右焦半径用“”号连接号连接焦点在焦点在x轴上时:轴上时:PF1=a+exo,PF2=a-exo;焦点在焦点在y轴上时:轴上时:PF1=a+eyo,PF2=a-eyo。该公式的记忆方法为该公式的记忆方法为下加上减下加上减”,即在,即在a与与ey0之之间,间,如果是下焦半径则用加号如果是下焦半径则用加号“+连接,如果是上焦半径用连接,如果是上焦半径用“”号连接号连接焦半径的最大值为:焦半径的最大值为:a+c焦半径的最小值为:焦半径的最小值为:a-c22课堂练习课堂练习1、椭圆、椭圆 上一点到准线上一点到准线 与到焦与到焦点(点(-2,0)的距离的比是)的距离的比是 ()B2、椭圆的两焦点把两准线间的距离三等分,则这个椭圆、椭圆的两焦点把两准线间的距离三等分,则这个椭圆的离心率是的离心率是()C233.若一个椭圆的离心率若一个椭圆的离心率e=1/2,准线方程是准线方程是 x=4,对应的焦点对应的焦点F(2,0),则椭圆的方程是),则椭圆的方程是 _3x2-8x+4y2=0 4:已知椭圆:已知椭圆 P为椭圆在第一象限内的点,它为椭圆在第一象限内的点,它与两焦点的连线互相垂直,求与两焦点的连线互相垂直,求P点的坐标。点的坐标。24变式:1.已知点M到定点F的距离与M到定直线l的距离的比为0.8,则动点M的轨迹是()A.圆 B.椭圆 C.直线 D.无法确定B25例例8:求椭圆:求椭圆 上一点上一点P,使得点使得点P与椭圆与椭圆两焦点连线互相垂直两焦点连线互相垂直.26引申引申:当点当点P与两焦点连线成钝角时与两焦点连线成钝角时,求求P点的横坐标点的横坐标 的取值范围的取值范围.例例8:求椭圆:求椭圆 上一点上一点P,使得点使得点P与椭圆与椭圆两焦点连线互相垂直两焦点连线互相垂直.272829小结小结1.椭圆的第二定义椭圆的第二定义 2.焦半径:焦半径:焦点在焦点在x轴上时:轴上时:PF1=a+ex0,PF2=a-ex0;焦点在焦点在y轴上时:轴上时:PF1=a+ey0,PF2=a-ey0。30