高二数学上册 9.1《矩阵的概念》课件1 沪教.ppt
-
资源ID:82675455
资源大小:285.50KB
全文页数:15页
- 资源格式: PPT
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高二数学上册 9.1《矩阵的概念》课件1 沪教.ppt
第二章第二章 矩阵矩阵2.1 矩阵的概念矩阵的概念2021/8/11 星期三1一、矩阵的概念一、矩阵的概念在实际问题里,经常用矩阵描述事物的状态在实际问题里,经常用矩阵描述事物的状态和事物和事物之间的联系之间的联系 ,例如,例如 四个城市之间的火车交通情况如下图四个城市之间的火车交通情况如下图(图中图中单箭头代表只有单向车,双箭头表示有双向车单箭头代表只有单向车,双箭头表示有双向车)。2021/8/11 星期三2常用表格来表示常用表格来表示:到站到站发发站站其中其中 表示有火车直达。表示有火车直达。为了便于计算为了便于计算,把表中的把表中的 改成改成1,空白地方填上空白地方填上0,0,就得到一个数表就得到一个数表:2021/8/11 星期三3排成的排成的 行行 列的数表列的数表定义定义:由由 个数个数这就是这就是矩阵矩阵2021/8/11 星期三4称为一个称为一个 行行 列矩阵列矩阵或或 矩阵矩阵.记为记为 或或元素为实数的称为实矩阵元素为实数的称为实矩阵,元素为复数的称为复矩阵元素为复数的称为复矩阵我们只讨论实矩阵我们只讨论实矩阵.矩阵通常用大写字母矩阵通常用大写字母A A、B B、C C等表示等表示.例例1 1 线性非齐次方程组线性非齐次方程组 称为矩阵的第称为矩阵的第 行行 列的列的元素元素.2021/8/11 星期三5与与 矩阵矩阵 相对相对应。对方程应。对方程组的解的讨论,可能化为对上述矩阵的讨论。组的解的讨论,可能化为对上述矩阵的讨论。例例2 2 某厂向三个商店发送四种产品的数量可列成某厂向三个商店发送四种产品的数量可列成 (也可用方括弧也可用方括弧 表示表示)。其中。其中 表示为工厂向第表示为工厂向第 个店发送第个店发送第 种产品的数量。种产品的数量。2021/8/11 星期三6例例3 3 是一个是一个 复矩阵复矩阵,是一个是一个 实矩阵实矩阵,是一个是一个 矩阵矩阵,是一个是一个 矩阵矩阵.是一个是一个 矩阵矩阵,2021/8/11 星期三7二、几种特殊矩阵二、几种特殊矩阵注意注意:不同阶数的零矩阵是不相等的不同阶数的零矩阵是不相等的.例如例如行矩阵也称为行向量。行矩阵也称为行向量。元素全为零的元素全为零的 矩阵,记为矩阵,记为:O:O或或1)只有一行的矩阵。只有一行的矩阵。2)零矩阵零矩阵:行矩阵行矩阵:2021/8/11 星期三8只有一列的矩阵。只有一列的矩阵。行数列数皆相等的矩阵。如行数列数皆相等的矩阵。如 阶方阵阶方阵 主对主对角线角线列矩阵列矩阵:3)4)方阵方阵:2021/8/11 星期三9上三角方阵上三角方阵:非零元素只可能在主对角线及其上方。非零元素只可能在主对角线及其上方。非零元素只可能在主对角线及其下方。非零元素只可能在主对角线及其下方。下三角方阵下三角方阵:上三角上三角 方阵方阵下三角下三角 方阵方阵5)2021/8/11 星期三10对角矩阵:对角矩阵:并它记作并它记作或或 形如形如 的方阵的方阵,称为称为对角矩阵对角矩阵(或或对角阵对角阵)。不全为不全为0 06)2021/8/11 星期三11单位方阵:单位方阵:主对角线上全为主对角线上全为1 1的对角方阵,记作的对角方阵,记作 数量矩阵数量矩阵:主对角元素都相等的对角矩阵。记作主对角元素都相等的对角矩阵。记作 7)8)2021/8/11 星期三12三、小结三、小结(1)(1)矩阵的概念矩阵的概念2021/8/11 星期三13(2)特殊矩阵特殊矩阵方阵方阵行矩阵与列矩阵行矩阵与列矩阵;单位矩阵单位矩阵.对角矩阵对角矩阵对角矩阵对角矩阵;零矩阵零矩阵;数量矩阵数量矩阵.上上(下下)三角矩矩阵三角矩矩阵;2021/8/11 星期三14思考题思考题矩阵与行列式的有何区别矩阵与行列式的有何区别?2021/8/11 星期三15