欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    参数估计-矩法和极大似然法.ppt

    • 资源ID:82676238       资源大小:632KB        全文页数:30页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    参数估计-矩法和极大似然法.ppt

    可靠性数学基础可靠性数学基础 参数估计可靠性数学基础可靠性数学基础 参数估计参数估计点估计点估计区间估计区间估计可靠性数学基础可靠性数学基础 参数的点估计参数的点估计点估计概念点估计概念求估计量的方法求估计量的方法小结小结可靠性数学基础可靠性数学基础 总体总体样本样本统计量统计量描述描述作出推断作出推断研究统计量的性质和评价一个统计推断的研究统计量的性质和评价一个统计推断的优良性,完全取决于其优良性,完全取决于其抽样分布抽样分布的性质的性质.随机抽样随机抽样可靠性数学基础可靠性数学基础 现在我们来介绍一类重要的统计推断问题现在我们来介绍一类重要的统计推断问题 参数估计问题是利用从总体抽样得到的信息来估参数估计问题是利用从总体抽样得到的信息来估计总体的某些参数或者参数的某些函数计总体的某些参数或者参数的某些函数.参数估计参数估计估计估计IC废品率废品率估计电子产品的重量估计电子产品的重量估计湖中鱼数估计湖中鱼数 估计降雨量估计降雨量在参数估计问题在参数估计问题中,假定总体分中,假定总体分布形式已知,未布形式已知,未知的仅仅是一个知的仅仅是一个或几个参数或几个参数.Chip可靠性数学基础可靠性数学基础 这类问题称为这类问题称为参数估计参数估计.参数估计问题的一般提法参数估计问题的一般提法X1,X2,Xn要依据该样本对参数要依据该样本对参数作出估计作出估计,或估计或估计的某个已知函数的某个已知函数 .现从该总体抽样,得样本现从该总体抽样,得样本 设有一个统计总体设有一个统计总体,总体的分布函数总体的分布函数为为F(x,),其中,其中 为未知参数为未知参数(可以是向量可以是向量).可靠性数学基础可靠性数学基础(假定平均面积服从正态分布(假定平均面积服从正态分布 )设这设这5个数是个数是:1.65 1.67 1.68 1.78 1.69 单位单位mm2 估计估计 为为1.68,这是这是点估计点估计.这是这是区间估计区间估计.估计估计在区间在区间 1.57,1.84 内,内,例如我们要估计某批芯片的平均面积例如我们要估计某批芯片的平均面积.现从该总体选取容量为现从该总体选取容量为5的样本,我们的任务的样本,我们的任务是要根据选出的样本(是要根据选出的样本(5个数)求出总体均值个数)求出总体均值 的的估计估计.而全部信息就由这而全部信息就由这5个数组成个数组成.可靠性数学基础可靠性数学基础 一、点估计概念一、点估计概念随机抽查随机抽查100笔记本电脑笔记本电脑 ,得得100个数据个数据 10,7,6,6.5,5,5.2,(磅)(磅)呢呢?据此据此,我们应如何估计我们应如何估计和和而全部信息就由这而全部信息就由这100个数组成个数组成.例例1 已知某批笔记本电脑的重量已知某批笔记本电脑的重量 ,未知未知可靠性数学基础可靠性数学基础 为估计为估计 :我们需要构造出适当的样本的函数我们需要构造出适当的样本的函数 T(X1,X2,Xn),每当有了样本,就代入该函数中算出一个值,用来每当有了样本,就代入该函数中算出一个值,用来作为作为 的估计值的估计值.把样本值代入把样本值代入T(X1,X2,Xn)中,中,估计值估计值.T(X1,X2,Xn)称为参数称为参数的的点估计量点估计量,得到得到 的一个的一个点点可靠性数学基础可靠性数学基础 我们知道我们知道,若若 ,由大数定律由大数定律,自然想到把样本重量的平均值作为总体平均重量的一自然想到把样本重量的平均值作为总体平均重量的一个估计个估计.样本重量的平均值样本重量的平均值则则 .用样本重量的均值用样本重量的均值 估计估计 .类似地,用样本重量的方差类似地,用样本重量的方差 估计估计 .可靠性数学基础可靠性数学基础 使用什么样的统计量去估计使用什么样的统计量去估计?可以用样本均值可以用样本均值;也可以用样本中位数也可以用样本中位数;还可以用别的统计量还可以用别的统计量.问题是问题是:可靠性数学基础可靠性数学基础 二、寻求估计量的方法二、寻求估计量的方法1.矩估计法矩估计法2.极大似然法极大似然法3.最小二乘法最小二乘法4.贝叶斯方法贝叶斯方法 这里我们主要介绍前面两种方法这里我们主要介绍前面两种方法.可靠性数学基础可靠性数学基础 最大似然法最大似然法 它它是是在在总总体体类类型型已已知知条条件件下下使使用用的的一一种种参参数数估估计方法计方法.它首先是由德国数学家它首先是由德国数学家高斯高斯在在1821年提出的年提出的.GaussFisher 然而然而,这个方法常这个方法常归功于英国统计学家归功于英国统计学家费歇费歇.费歇费歇在在1922年重新发现了这年重新发现了这一方法,并首先研究了这种方法一方法,并首先研究了这种方法的一些性质的一些性质.可靠性数学基础可靠性数学基础 最大似然法的基本思想最大似然法的基本思想 先看一个简单例子:先看一个简单例子:一只野兔从前方窜过一只野兔从前方窜过.是谁打中的呢?是谁打中的呢?某位同学与一位猎人一起外某位同学与一位猎人一起外出打猎出打猎.如果要你推测,如果要你推测,你会如何想呢你会如何想呢?只听一声枪响,野兔应声倒下只听一声枪响,野兔应声倒下.可靠性数学基础可靠性数学基础 你就会想,只发一枪便打中你就会想,只发一枪便打中,猎人命中的概率猎人命中的概率一般大于这位同学命中的概率一般大于这位同学命中的概率.看来这一枪是猎人看来这一枪是猎人射中的射中的.这个例子所作的推断已经体现了极大似然法的这个例子所作的推断已经体现了极大似然法的基本思想基本思想.可靠性数学基础可靠性数学基础 最大似然估计原理:最大似然估计原理:当给定样本当给定样本X1,X2,Xn时,定义时,定义似然函数似然函数为:为:设设X1,X2,Xn是取自总体是取自总体X的一个样本,样本的一个样本,样本的联合密度的联合密度(连续型)或联合分布律连续型)或联合分布律 (离散型离散型)为为 f(x1,x2,xn;).f(x1,x2,xn;)这里这里 x1,x2,xn 是样本的观察值是样本的观察值.可靠性数学基础可靠性数学基础 似然函数:似然函数:最大似然估计法最大似然估计法就是用使就是用使 达到最大值的达到最大值的 去估计去估计 .称称 为为 的的最大似然估计值最大似然估计值.看作参数看作参数 的函数,它可作为的函数,它可作为 将以多大可将以多大可能产生样本值能产生样本值 x1,x2,xn 的一种度量的一种度量.f(x1,x2,xn;)而相应的而相应的统计量统计量称为称为 的的最大似然估计量最大似然估计量.可靠性数学基础可靠性数学基础 两点说明:两点说明:1、求似然函数、求似然函数L()的最大值点,可以应用的最大值点,可以应用微积分中的技巧。由于微积分中的技巧。由于ln(x)是是 x 的增函数的增函数,lnL()与与L()在在 的同一值处达到它的最大值,假定的同一值处达到它的最大值,假定 是一实数,且是一实数,且lnL()是是 的一个可微函数。通过的一个可微函数。通过求解方程:求解方程:可以得到可以得到 的的MLE.若若 是向量,上述方程必须用方程组代替是向量,上述方程必须用方程组代替.2、用上述求导方法求参数的、用上述求导方法求参数的MLE有时行不有时行不通,这时要用最大似然原则来求通,这时要用最大似然原则来求.可靠性数学基础可靠性数学基础 下面举例说明如何求最大似然估计下面举例说明如何求最大似然估计L(p)=f(x1,x2,xn;p)例例5 设设X1,X2,Xn是取自总体是取自总体 XB(1,p)的一个的一个样本,求参数样本,求参数p的最大似然估计量的最大似然估计量.解:解:似然函数似然函数为为:可靠性数学基础可靠性数学基础 对数似然函数对数似然函数为:为:可靠性数学基础可靠性数学基础 对对p求导并令其为求导并令其为0,=0得得即为即为 p 的的最大似然估计值最大似然估计值.从而从而 p 的的最大似然估计量最大似然估计量为为 可靠性数学基础可靠性数学基础 (4)在最大值点的表达式中在最大值点的表达式中,用样本值代入就用样本值代入就得参数的得参数的最大似然估计值最大似然估计值.求最大似然估计求最大似然估计(MLE)的一般步骤是:的一般步骤是:(1)由总体分布导出样本的联合分布率由总体分布导出样本的联合分布率(或联或联合密度合密度);(2)把样本联合分布率把样本联合分布率(或联合密度或联合密度)中自变中自变 量看成已知常数量看成已知常数,而把参数而把参数 看作自变量看作自变量,得到得到似然似然 函数函数L();(3)求似然函数求似然函数L()的最大值点的最大值点(常常转化为常常转化为求求ln L()的最大值点的最大值点),即,即 的的MLE;可靠性数学基础可靠性数学基础 例例 设总体设总体 X N(),未知未知.是来自是来自 X 的样本值的样本值,试求试求 的最大似然估计量的最大似然估计量.似然函数为似然函数为 解解X 的概率密度为的概率密度为 可靠性数学基础可靠性数学基础 于是于是令令可靠性数学基础可靠性数学基础 解得解得的最大似然估计量的最大似然估计量为为可靠性数学基础可靠性数学基础 解:似然函数为解:似然函数为例例 设设X1,X2,Xn是取自总体是取自总体X的一个样本的一个样本其中其中 0,求求 的最大似然估计的最大似然估计.i=1,2,n可靠性数学基础可靠性数学基础 对数似然函数为对数似然函数为解:似然函数为解:似然函数为i=1,2,n可靠性数学基础可靠性数学基础=0 (2)由由(1)得得=0 (1)对对 分别求偏导并令其为分别求偏导并令其为0,对数似然函数为对数似然函数为用求导方法无法最终确定用求导方法无法最终确定用最大似然原则来求用最大似然原则来求.可靠性数学基础可靠性数学基础 对对是是故使故使 达到最大的达到最大的 即即 的的MLE 于是于是 取其它值时,取其它值时,即即 为为 的的MLE.且是且是 的增函数的增函数可靠性数学基础可靠性数学基础 我们介绍了参数点估计我们介绍了参数点估计,给出了寻求估计量最常给出了寻求估计量最常用的矩法和极大似然法用的矩法和极大似然法.参数点估计是用一个确定的值去估计未知的参数点估计是用一个确定的值去估计未知的参数参数.看来似乎精确看来似乎精确,实际上把握不大,实际上把握不大.小结小结

    注意事项

    本文(参数估计-矩法和极大似然法.ppt)为本站会员(赵**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开