2014-考研-真题-必备上海财经大学中级微观经济学课程(叶正茂)第五章.pptx
会计学12014-考研考研-真题真题-必备上海财经大学中级必备上海财经大学中级微观微观(wigun)经济学课程课件经济学课程课件(叶正茂叶正茂)第五章第五章PPT课件课件第一页,共109页。第1页/共109页第二页,共109页。n n例例例例:齐王与田忌赛马的博弈齐王与田忌赛马的博弈齐王与田忌赛马的博弈齐王与田忌赛马的博弈(b y)(b y)n n 齐王齐王齐王齐王 田忌田忌田忌田忌n n A1 A1 好好好好 B1 B1 好好好好 n n A2 A2 中中中中 B2 B2 中中中中n n A3 A3 下下下下 B3 B3 下下下下n n A1 A1 好好好好 B3 B3 下下下下 n n A2 A2 中中中中 B1 B1 好好好好 n n A3 A3 下下下下 B2 B2 中中中中第2页/共109页第三页,共109页。Some Applications of Game Theoryn nThe study of oligopolies(industries containing only a few firms)n nThe study of cartels;e.g.OPECn nThe study of externalities;e.g.using a common resource such as a fishery.n nThe study of military strategies.第3页/共109页第四页,共109页。What is a Game?n nA game consists ofn na set of playersn na set of strategies for each playern nthe payoffs to each player for every possible list of strategy choices by the players.第4页/共109页第五页,共109页。n n怎样描述一个博弈?怎样描述一个博弈?n n博弈三大要素博弈三大要素n n 参与者或局中人参与者或局中人n n 参与者的策略(空间)参与者的策略(空间)n n 报酬或收益或支付函数:作报酬或收益或支付函数:作为博弈的结局为博弈的结局(jij),每个,每个参与者都得到各自的报酬或收参与者都得到各自的报酬或收益益n n可以用支付矩阵(报酬矩阵)可以用支付矩阵(报酬矩阵)描述一个博弈描述一个博弈第5页/共109页第六页,共109页。n n 乙乙n n 合作合作 不合作不合作n n 合作合作 10,10 6,12n n 甲甲n n 不合作不合作 12,6 8,8n n 第一个数字第一个数字(shz)代表甲的报酬;代表甲的报酬;n n 第二个数字第二个数字(shz)代表乙的报酬;代表乙的报酬;第6页/共109页第七页,共109页。Two-Player Gamesn nA game with just two players is a two-player game.n nWe will study only games in which there are two players,each of whom can choose between only two strategies.第7页/共109页第八页,共109页。n nThe players are called A and B.n nPlayer A has two strategies,called“Up”and“Down”.n nPlayer B has two strategies,called“Left”and“Right”.n nThe table showing the payoffs to both players for each of the four possible strategy combinations is the games payoff matrix.第8页/共109页第九页,共109页。An Example of a Two-Player GameThis is thegamespayoff matrix.Player BPlayer APlayer As payoff is shown first.Player Bs payoff is shown second.LRUD(3,9)(0,0)(1,8)(2,1)第9页/共109页第十页,共109页。An Example of a Two-Player GameE.g.if A plays Up and B plays Right then As payoff is 1 and Bs payoff is 8.This is thegamespayoff matrix.Player BPlayer ALRUD(3,9)(0,0)(1,8)(2,1)第10页/共109页第十一页,共109页。An Example of a Two-Player GameAnd if A plays Down and B plays Right then As payoff is 2 and Bs payoff is 1.This is thegamespayoff matrix.Player BPlayer ALRUD(3,9)(0,0)(1,8)(2,1)第11页/共109页第十二页,共109页。Player BPlayer AA play of the game is a pair such as(U,R)where the 1st element is the strategychosen by Player A and the 2nd is the strategy chosen by Player B.LRUD(3,9)(0,0)(1,8)(2,1)第12页/共109页第十三页,共109页。What plays are we likely to see for thisgame?Player BPlayer ALRUD(3,9)(0,0)(1,8)(2,1)第13页/共109页第十四页,共109页。An Example of a Two-Player GamePlayer BPlayer AIs(U,R)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第14页/共109页第十五页,共109页。An Example of a Two-Player GamePlayer BPlayer AIf B plays Right then As best reply is Downsince this improves As payoff from 1 to 2.So(U,R)is not a likely play.Is(U,R)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第15页/共109页第十六页,共109页。An Example of a Two-Player GamePlayer BPlayer AIs(D,R)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第16页/共109页第十七页,共109页。An Example of a Two-Player GamePlayer BPlayer AIs(D,R)alikely play?If B plays Right then As best reply is Down.LRUD(3,9)(0,0)(1,8)(2,1)第17页/共109页第十八页,共109页。An Example of a Two-Player GamePlayer BPlayer AIf B plays Right then As best reply is Down.If A plays Down then Bs best reply is Right.So(D,R)is a likely play.Is(D,R)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第18页/共109页第十九页,共109页。An Example of a Two-Player GamePlayer BPlayer AIs(D,L)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第19页/共109页第二十页,共109页。An Example of a Two-Player GamePlayer BPlayer AIf A plays Down then Bs best reply is Right,so(D,L)is not a likely play.Is(D,L)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第20页/共109页第二十一页,共109页。An Example of a Two-Player GamePlayer BPlayer AIs(U,L)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第21页/共109页第二十二页,共109页。An Example of a Two-Player GamePlayer BPlayer AIf A plays Up then Bs best reply is Left.Is(U,L)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第22页/共109页第二十三页,共109页。An Example of a Two-Player GamePlayer BPlayer AIf A plays Up then Bs best reply is Left.If B plays Left then As best reply is Up.So(U,L)is a likely play.Is(U,L)alikely play?LRUD(3,9)(0,0)(1,8)(2,1)第23页/共109页第二十四页,共109页。5.2 Nash Equilibrium-参与参与(cny)人同时采取行动人同时采取行动n nA play of the game where each strategy is a best reply to the other is a Nash equilibrium.n nOur above example has two Nash equilibria;(U,L)and(D,R).n n纳什均衡是指若其他参与者不改变策略,任何(rnh)一个参加者都不会改变自己的策略的均衡状态。第24页/共109页第二十五页,共109页。An Example of a Two-Player GamePlayer BPlayer A(U,L)and(D,R)are both Nash equilibria forthe game.LRUD(3,9)(0,0)(1,8)(2,1)第25页/共109页第二十六页,共109页。An Example of a Two-Player GamePlayer BPlayer A(U,L)and(D,R)are both Nash equilibria forthe game.But which will we see?Noticethat(U,L)is preferred to(D,R)by bothplayers.Must we then see(U,L)only?后面后面(hu mian)的序贯博弈可以说明这个问题。的序贯博弈可以说明这个问题。LRUD(3,9)(0,0)(1,8)(2,1)第26页/共109页第二十七页,共109页。5.3 占优策略占优策略(cl)均衡均衡-参与人同时采取行动参与人同时采取行动n n 乙乙n n 合合作作(hzu)不不合合作作(hzu)n n 合作合作(hzu)10,10 6,12n n 甲甲n n 不合作不合作(hzu)12,6 8,8第27页/共109页第二十八页,共109页。n n无无 论论 对对 方方 采采 取取 什什 么么 策策 略略(cl)叫叫占占优优策策略略(cl),某某参参与与者者的的唯唯一一最最优优的的策策略略(cl)n n博博弈弈均均衡衡指指博博弈弈中中的的所所有有参参与与者者都都不不想想改改变变自自己己的的策策略略(cl)的一种状态。的一种状态。n n由由博博弈弈中中的的所所有有参参与与者者的的占占优优策策略略(cl)组组合合所所构构成成的的均均衡衡就就是是占占优优策策略略(cl)均均衡。衡。n n 只只要要每每一一参参与与者者都都具具有有占占优优策策略略(cl)的的话话,那那么么,该该博博 弈弈 一一 定定 存存 在在 占占 优优 策策 略略(cl)均衡。均衡。第28页/共109页第二十九页,共109页。n n占占优优策策略略均均衡衡与与纳纳什什均均衡衡的的比比较:较:n n占占优优策策略略均均衡衡一一定定(ydng)是是纳纳什什均均衡衡;但但纳纳什什均均衡衡不不一一定定(ydng)是占优策略均衡。是占优策略均衡。n n占占优优策策略略均均衡衡是是比比纳纳什什均均衡衡更更强的一个博弈均衡概念。强的一个博弈均衡概念。第29页/共109页第三十页,共109页。The Prisoners Dilemma-占优策略均衡占优策略均衡(jnhng)的一个例子的一个例子n nTo see if Pareto-preferred outcomes must be what we see in the play of a game,consider a famous second example of a two-player game called the Prisoners Dilemma.第30页/共109页第三十一页,共109页。The Prisoners DilemmaWhat plays are we likely to see for thisgame?ClydeBonnie(-5,-5)(-15,-1)(-1,-15)(-10,-10)SCSC第31页/共109页第三十二页,共109页。The Prisoners DilemmaIf Bonnie plays Silence then Clydes bestreply is Confess.ClydeBonnie(-5,-5)(-15,-1)(-1,-15)(-10,-10)SCSC第32页/共109页第三十三页,共109页。The Prisoners DilemmaIf Bonnie plays Silence then Clydes bestreply is Confess.If Bonnie plays Confess then Clydesbest reply is Confess.ClydeBonnie(-5,-5)(-15,-1)(-1,-15)(-10,-10)SCSC第33页/共109页第三十四页,共109页。The Prisoners DilemmaSo no matter what Bonnie plays,Clydesbest reply is always Confess.Confess is a dominant strategy for Clyde.ClydeBonnie(-5,-5)(-15,-1)(-1,-15)(-10,-10)SCSC第34页/共109页第三十五页,共109页。The Prisoners DilemmaSimilarly,no matter what Clyde plays,Bonnies best reply is always Confess.Confess is a dominant strategy forBonnie also.ClydeBonnie(-5,-5)(-15,-1)(-1,-15)(-10,-10)SCSC第35页/共109页第三十六页,共109页。The Prisoners DilemmaSo the only Nash equilibrium for thisgame is(C,C),even though(S,S)givesboth Bonnie and Clyde better payoffs.The only Nash equilibrium is inefficient.ClydeBonnie(-5,-5)(-15,-1)(-1,-15)(-10,-10)SCSC第36页/共109页第三十七页,共109页。The Prisoners Dilemma囚徒困境反映了一个问题,从个人角度出发选择的囚徒困境反映了一个问题,从个人角度出发选择的占优策略占优策略(cl),从整体来看,却是最差的结局。即个人,从整体来看,却是最差的结局。即个人理性与团体理性的冲突。理性与团体理性的冲突。ClydeBonnie(-5,-5)(-15,-1)(-1,-15)(-10,-10)SCSC第37页/共109页第三十八页,共109页。n n是否存在合作解?是否存在合作解?是否存在合作解?是否存在合作解?n n一次博弈肯定不存在。一次博弈肯定不存在。一次博弈肯定不存在。一次博弈肯定不存在。n n重复博弈重复博弈重复博弈重复博弈n n 无限期重复博弈中存在囚徒困境无限期重复博弈中存在囚徒困境无限期重复博弈中存在囚徒困境无限期重复博弈中存在囚徒困境(knjng)(knjng)中的合作均衡解。中的合作均衡解。中的合作均衡解。中的合作均衡解。n n 有限期重复博弈中就不存在囚徒困境有限期重复博弈中就不存在囚徒困境有限期重复博弈中就不存在囚徒困境有限期重复博弈中就不存在囚徒困境(knjng)(knjng)中的合作均衡解。(见中的合作均衡解。(见中的合作均衡解。(见中的合作均衡解。(见书上书上书上书上410410页的说明)页的说明)页的说明)页的说明)n n 但如果是不能确定终止期的有限期重复博弈模型中,纳什均衡的合作但如果是不能确定终止期的有限期重复博弈模型中,纳什均衡的合作但如果是不能确定终止期的有限期重复博弈模型中,纳什均衡的合作但如果是不能确定终止期的有限期重复博弈模型中,纳什均衡的合作解是存在的。解是存在的。解是存在的。解是存在的。第38页/共109页第三十九页,共109页。5.4 序贯博弈序贯博弈-参与参与(cny)人的行动有先后人的行动有先后n nIn both examples the players chose their strategies simultaneously.n nSuch games are simultaneous play games.第39页/共109页第四十页,共109页。n nBut there are games in which one player plays before another player.n nSuch games are sequential play games.n nThe player who plays first is the leader.The player who plays second is the follower.第40页/共109页第四十一页,共109页。A Sequential Game Examplen nSometimes a game has more than one Nash equilibrium and it is hard to say which is more likely to occur.n nWhen such a game is sequential it is sometimes possible to argue that one of the Nash equilibria is more likely to occur than the other.第41页/共109页第四十二页,共109页。A Sequential Game ExamplePlayer BPlayer A(U,L)and(D,R)are both Nash equilibriawhen this game is played simultaneouslyand we have no way of deciding whichequilibrium is more likely to occur.LRUD(1,9)(0,0)(1,9)(2,1)第42页/共109页第四十三页,共109页。A Sequential Game ExamplePlayer BPlayer ASuppose instead that the game is playedsequentially,with A leading and B following.We can rewrite the game in its extensive form.LRUD(1,9)(0,0)(1,9)(2,1)第43页/共109页第四十四页,共109页。A Sequential Game ExampleUDLLRR(1,9)(1,9)(0,0)(2,1)ABBA plays first.B plays second.第44页/共109页第四十五页,共109页。A Sequential Game ExampleUDLLRR(1,9)(1,9)(0,0)(2,1)ABBA plays first.B plays second.(U,L)is a Nash equilibrium.第45页/共109页第四十六页,共109页。A Sequential Game ExampleUDLLRR(1,9)(1,9)(0,0)(2,1)ABBA plays first.B plays second.(U,L)is a Nash equilibrium.(D,R)is a Nash equilibrium.Which is more likely to occur?第46页/共109页第四十七页,共109页。A Sequential Game ExampleUDLLRR(1,9)(1,9)(0,0)(2,1)ABBA plays first.B plays second.If A plays U then B plays L;A gets 1.第47页/共109页第四十八页,共109页。A Sequential Game ExampleUDLLRR(1,9)(1,9)(0,0)(2,1)ABBA plays first.B plays second.If A plays U then B plays L;A gets 1.If A plays D then B plays R;A gets 2.第48页/共109页第四十九页,共109页。A Sequential Game ExampleUDLLRR(1,9)(1,9)(0,0)(2,1)ABBA plays first.B plays second.If A plays U then B plays L;A gets 1.If A plays D then B plays R;A gets 2.So(D,R)is the likely Nash equilibrium.第49页/共109页第五十页,共109页。(D,R)is the likely Nash equilibriumn n因此,如果让因此,如果让因此,如果让因此,如果让A A先行动,先行动,先行动,先行动,(D,R)is the likely Nash equilibrium(D,R)is the likely Nash equilibrium,而,而,而,而(上上上上,左左左左)就不是一个合理的均衡,否则就不是一个合理的均衡,否则就不是一个合理的均衡,否则就不是一个合理的均衡,否则A A就是不理性的。就是不理性的。就是不理性的。就是不理性的。n n进一步分析:从参与人进一步分析:从参与人进一步分析:从参与人进一步分析:从参与人B B的角度来看,他只能得到的角度来看,他只能得到的角度来看,他只能得到的角度来看,他只能得到(d do)(d do)收益收益收益收益1 1而不是而不是而不是而不是9.9.他可以威胁他可以威胁他可以威胁他可以威胁A A说,如果说,如果说,如果说,如果A A采取采取采取采取“下下下下”,他就采取,他就采取,他就采取,他就采取“左左左左”,A A只能得到只能得到只能得到只能得到(d(d do)0.do)0.此时此时此时此时A A选择选择选择选择“上上上上”是合理的。是合理的。是合理的。是合理的。(上上上上,左左左左)就是博弈的均衡。就是博弈的均衡。就是博弈的均衡。就是博弈的均衡。n n结论是:如果结论是:如果结论是:如果结论是:如果B B的威胁是可置信的,的威胁是可置信的,的威胁是可置信的,的威胁是可置信的,(上上上上,左左左左)就是博弈的均衡就是博弈的均衡就是博弈的均衡就是博弈的均衡;如果如果如果如果B B的威的威的威的威胁是不可置信的,则在胁是不可置信的,则在胁是不可置信的,则在胁是不可置信的,则在A A先行动的情况下先行动的情况下先行动的情况下先行动的情况下(下下下下,右右右右)就是博弈的均衡。就是博弈的均衡。就是博弈的均衡。就是博弈的均衡。第50页/共109页第五十一页,共109页。一个具体的例子一个具体的例子-遏制进入遏制进入(jnr)的博弈的博弈n n假设一个垄断厂商正面临着另一家厂商的假设一个垄断厂商正面临着另一家厂商的进入威胁。进入者先决定是否进入市场,进入威胁。进入者先决定是否进入市场,然后然后(rnhu),在位者决定是否降价作为,在位者决定是否降价作为斗争遏制其进入。斗争遏制其进入。第51页/共109页第五十二页,共109页。A Sequential Game Example不进入不进入(jnr)进入进入(jnr)斗争斗争(du zhng)斗争斗争不斗争不斗争不斗争不斗争(1,9)(1,9)(0,0)(2,1)进入者进入者在位者选择在位者选择在位者选择在位者选择第52页/共109页第五十三页,共109页。n n由于由于由于由于(yuy)(yuy)进入者先行动,如果它选择进入,获得的收益为进入者先行动,如果它选择进入,获得的收益为进入者先行动,如果它选择进入,获得的收益为进入者先行动,如果它选择进入,获得的收益为2 2。(进。(进。(进。(进入,不斗争)是一个均衡结果。入,不斗争)是一个均衡结果。入,不斗争)是一个均衡结果。入,不斗争)是一个均衡结果。n n但在位者可以威胁,如果你进入,我就选择但在位者可以威胁,如果你进入,我就选择但在位者可以威胁,如果你进入,我就选择但在位者可以威胁,如果你进入,我就选择“斗争斗争斗争斗争”,大家的收益都,大家的收益都,大家的收益都,大家的收益都为为为为0.0.n n如果斗争的威胁是可置信的话,例如在位者拥有多余的生产能力,而如果斗争的威胁是可置信的话,例如在位者拥有多余的生产能力,而如果斗争的威胁是可置信的话,例如在位者拥有多余的生产能力,而如果斗争的威胁是可置信的话,例如在位者拥有多余的生产能力,而且此时如果进入者进入,它选择且此时如果进入者进入,它选择且此时如果进入者进入,它选择且此时如果进入者进入,它选择“斗争斗争斗争斗争”策略,它可以获得的收益是策略,它可以获得的收益是策略,它可以获得的收益是策略,它可以获得的收益是2 2而不是而不是而不是而不是0 0(因为它做好了准备)(因为它做好了准备)(因为它做好了准备)(因为它做好了准备)n n见书上见书上见书上见书上415415页图页图页图页图28.228.2第53页/共109页第五十四页,共109页。A Sequential Game Example不进入不进入(jnr)进入进入(jnr)斗争斗争(du zhng)斗争斗争不斗争不斗争不斗争不斗争(1,9)(1,9)(0,2)(2,1)进入者进入者在位者选择在位者选择在位者选择在位者选择第54页/共109页第五十五页,共109页。n n既然进入者知道,在位者既然进入者知道,在位者既然进入者知道,在位者既然进入者知道,在位者“斗争斗争斗争斗争”是可置信的,那么进入者理性选择是是可置信的,那么进入者理性选择是是可置信的,那么进入者理性选择是是可置信的,那么进入者理性选择是“不进入不进入不进入不进入”,因为,因为,因为,因为“进入进入进入进入”收益为收益为收益为收益为0 0,“不进入不进入不进入不进入”收益为收益为收益为收益为1.1.而此时在位者而此时在位者而此时在位者而此时在位者获得的收益为获得的收益为获得的收益为获得的收益为9.9.n n这就意味着,在位者将维持现有的垄断地位,并永远不会利用额外的生这就意味着,在位者将维持现有的垄断地位,并永远不会利用额外的生这就意味着,在位者将维持现有的垄断地位,并永远不会利用额外的生这就意味着,在位者将维持现有的垄断地位,并永远不会利用额外的生产能力产能力产能力产能力(shn(shn ch ch n nnn nn l)l)!n n尽管如此,在位者投资额外的生产能力尽管如此,在位者投资额外的生产能力尽管如此,在位者投资额外的生产能力尽管如此,在位者投资额外的生产能力(shn(shn ch ch n nnn nn l)l)仍是一件值仍是一件值仍是一件值仍是一件值得做的事情,因为它使得要进入的进入者觉得它的得做的事情,因为它使得要进入的进入者觉得它的得做的事情,因为它使得要进入的进入者觉得它的得做的事情,因为它使得要进入的进入者觉得它的“斗争斗争斗争斗争”策略可置信。策略可置信。策略可置信。策略可置信。第55页/共109页第五十六页,共109页。5.5纯策略纯策略(cl)与混合策略与混合策略(cl)Player BPlayer AThis is our original example once more.Suppose again that play is simultaneous.We discovered that the game has two Nashequilibria;(U,L)and(D,R).LRUD(3,9)(0,0)(1,8)(2,1)第56页/共109页第五十七页,共109页。Pure StrategiesPlayer BPlayer APlayer As has been thought of as choosingto play either U or D,but no combination ofboth;that is,as playing purely U or D.U and D are Player As pure strategies.LRUD(3,9)(0,0)(1,8)(2,1)第57页/共109页第五十八页,共109页。Pure StrategiesPlayer BPlayer ASimilarly,L and R are Player Bs purestrategies.每个参与每个参与(cny)人只选择一种策略并始终坚持这个选择人只选择一种策略并始终坚持这个选择,这种策略称为纯策略。,这种策略称为纯策略。LRUD(3,9)(0,0)(1,8)(2,1)第58页/共109页第五十九页,共109页。Pure StrategiesPlayer BPlayer AConsequently,(U,L)and(D,R)are purestrategy Nash equilibria.Must every gamehave at least one pure strategy Nashequilibrium?LRUD(3,9)(0,0)(1,8)(2,1)第59页/共109页第六十页,共109页。Pure StrategiesPlayer BPlayer AHere is a new game.Are there any purestrategy Nash equilibria?(1,2)(0,4)(0,5)(3,2)UDLR第60页/共109页第六十一页,共109页。Pure StrategiesPlayer BPlayer AIs(U,L)a Nash equilibrium?(1,2)(0,4)(0,5)(3,2)UDLR第61页/共109页第六十二页,共109页。Pure StrategiesPlayer BPlayer AIs(U,L)a Nash equilibrium?No.Is(U,R)a Nash equilibrium?(1,2)(0,4)(0,5)(3,2)UDLR第62页/共109页第六十三页,共109页。Pure StrategiesPlayer BPlayer AIs(U,L)a Nash equilibrium?No.Is(U,R)a Nash equilibrium?No.Is(D,L)a Nash equilibrium?(1,2)(0,4)(0,5)(3,2)UDLR第63页/共109页第六十四页,共109页。Pure StrategiesPlayer BPlayer AIs(U,L)a Nash equilibrium?No.Is(U,R)a Nash equilibrium?No.Is(D,L)a Nash equilibrium?No.Is(D,R)a Nash equilibrium?(1,2)(0,4)(0,5)(3,2)UDLR第64页/共109页第六十五页,共109页。Pure StrategiesPlayer BPlayer AIs(U,L)a Nash equilibrium?No.Is(U,R)a Nash equilibrium?No.Is(D,L)a Nash equilibrium?No.Is(D,R)a Nash equilibrium?No.(1,2)(0,4)(0,5)(3,2)UDLR第65页/共109页第六十六页,共109页。Pure StrategiesPlayer BPlayer ASo the game has no Nash equilibria in purestrategies.Even so,the game does have aNash equilibrium,but in mixed strategies.(1,2)(0,4)(0,5)(3,2)UDLR第66页/共109页第六十七页,共109页。Mixed Strategiesn nInstead of playing purely Up or Down,Player A selects a probability distribution(pU,1-pU),meaning that with probability pU Player A will play Up and with probability 1-pU will play Down.n nPlayer A is mixing over the pure strategies Up and Down.n nThe probability distribution(pU,1-pU),is a mixed strategy for Player A.第67页/共109页第六十八页,共109页。Mixed Strategiesn nSimilarly,Player B selects a probability distribution(pL,1-pL),meaning that with probability pL Player B will play Left and with probability 1-pL will play Right.n nPlayer B is mixing over the pure strategies Left and Right.n nThe probability distribution(pL,1-p