232二次函数y=ax2的图象和性质课件1.ppt
22.2二次函数y=ax2的图象和性质一、提出问题一、提出问题 1,同学们可以回想一下,一次函数的性质是,同学们可以回想一下,一次函数的性质是如何研究的如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2、我们能否类比研究一次函数性质方法我们能否类比研究一次函数性质方法来研究二次函数的性质呢来研究二次函数的性质呢?如果可以,应如果可以,应先研究什么先研究什么?可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象3一次函数的图象是什么?二次一次函数的图象是什么?二次函数的图象是什么函数的图象是什么?你想直观地了解它的性质吗你想直观地了解它的性质吗?数形数形结合结合,直观感受直观感受在二次函数在二次函数y=y=x x2 2中中,y,y随随x x的变化而变化的规律的变化而变化的规律是什么?是什么?范例范例w观察观察y=y=x x2 2的表达式的表达式,选择适当选择适当x x值值,并计算相应并计算相应的的y y值值,完成下表:完成下表:w你会用描点法画二次函数y=y=x x2 2的图象吗的图象吗?xy=x x2 2x-3-2-10123y=x x2 2xy=x x2 29 94 41 10 01 14 49 9xy0 0-4-3-2-11234108642-21描点描点,连线连线y=x2 2?观察图象观察图象,回答问题串回答问题串w(1)(1)你能描述图象的形状吗你能描述图象的形状吗?与同伴进行交流与同伴进行交流.议一议议一议w(2)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.w(3)图象 与x轴有交点吗?如果有,交点坐标是什么?w(4)当x0呢?w(5)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?xy0 0-4-3-2-11234108642-21y=x2 2这条抛物线关于这条抛物线关于y轴对称轴对称,y轴就轴就 是它的对称轴是它的对称轴.对称轴与抛物对称轴与抛物线的交点叫做线的交点叫做抛物线的顶点抛物线的顶点.二次函数二次函数y=x2的的图象形如物体抛射图象形如物体抛射时所经过的路线时所经过的路线,我我们把它叫做们把它叫做抛物线抛物线.当当x0(在对称轴的在对称轴的右侧右侧)时时,y随着随着x的增大而的增大而增大增大.当当x=-2时,时,y=4当当x=-1时,时,y=1当当x=1时,时,y=1当当x=2时,时,y=4抛物线抛物线y=x2在在x轴的轴的上方上方(除顶点外除顶点外),顶点顶点是它的最低点是它的最低点,开口开口向上向上,并且向上无限并且向上无限伸展伸展;当当x=0时时,函数函数y的值最小的值最小,最小值是最小值是0.在在学学中中做做在在做做中中学学w(1)二次函数二次函数y=-y=-x x2 2的图象是什么形状?的图象是什么形状?你能根据表格中的数据作出猜想吗?驶向胜利的彼岸w(2)(2)先想一想,然后作出它的图象先想一想,然后作出它的图象w(3)它与二次函数它与二次函数y=x2的图象有什么关系?的图象有什么关系?xy=-x x2 2x-3-2-10123y=-x x2 2x-9-9-4-4-1-10 0-1-1-4-4-9-9做一做做一做P405 5驶向胜利的彼岸xy0 0-4-3-2-11234-10-8-6-4-22-1描点描点,连线连线y=-=-x2 2?做做一做一做驶向胜利的彼岸xy0 0-4-3-2-11234-10-8-6-4-22-1观察图象,回答问题串(1)1)你能描述图象的形状吗你能描述图象的形状吗?与同伴进行交流与同伴进行交流.(2)图象 与x轴有交点吗?如果有,交点坐标是什么?(3)当x0呢?(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.y=-=-x2 2描点描点,连线连线这条抛物线关于这条抛物线关于y轴对称轴对称,y轴就轴就 是它的对称轴是它的对称轴.对称轴与抛物对称轴与抛物线的交点叫做线的交点叫做抛物线的顶点抛物线的顶点.二次函数二次函数y=-x2的的图象形如物体抛射图象形如物体抛射时所经过的路线时所经过的路线,我我们把它叫做们把它叫做抛物线抛物线.y当当x0(在对称轴在对称轴的右侧的右侧)时时,y随着随着x的增大而减小的增大而减小.y 当当x=-2时时,y=-4 当当x=-1时时,y=-1当当x=1时时,y=-1当当x=2时时,y=-4抛物线抛物线y=-x2在在x轴的轴的下方下方(除顶点外除顶点外),顶点顶点是它的最高点是它的最高点,开口开口向下向下,并且向下无限并且向下无限伸展伸展;当当x=0时时,函数函数y的值最大的值最大,最大值是最大值是0.看图说话w函数函数y=ay=ax x2 2(a0)(a0)的图象和性质的图象和性质:做一做做一做y=x2y=-x2xy0yx0?它们之间有何关系?二次函数二次函数y=ax2的性质的性质.顶点坐标与对称轴顶点坐标与对称轴.位置与开口方向位置与开口方向.增减性与最值增减性与最值抛物线抛物线顶点坐标顶点坐标对称轴对称轴位置位置开口方向开口方向增减性增减性最值最值y=x2y=-x2(0,0)(0,0)y轴轴y轴轴在在x轴的上方轴的上方(除顶点外除顶点外)在在x轴的下方轴的下方(除顶点外除顶点外)向上向上向下向下当当x=0时时,最小值为最小值为0.当当x=0时时,最大值为最大值为0.在对称轴的左侧在对称轴的左侧,y随着随着x的增大而减小的增大而减小.在对称轴的右侧在对称轴的右侧,y随着随着x的增大而增大的增大而增大.在对称轴的左侧在对称轴的左侧,y随着随着x的增大而增大的增大而增大.在对称轴的右侧在对称轴的右侧,y随着随着x的增大而减小的增大而减小.根据图形填表:根据图形填表:做一做做一做y=y=x x2 2和和y=-y=-x x2 2是是y=ay=ax x2 2当当a=a=1 1时时的特的特殊例子殊例子.a.a的的符号确符号确定着抛物线的定着抛物线的驶向胜利的彼岸x0y函数函数y=ay=ax x2 2(a0)(a0)的图象和性质的图象和性质:在同一坐标系中作出函数在同一坐标系中作出函数y=y=x x2 2和和y=-y=-x x2 2的图象的图象看图说话看图说话y=x2 2y=-=-x2 21.抛物线抛物线y=ax2的顶点是原点的顶点是原点,对称轴对称轴是是y轴轴.2.当当a0时,抛物线时,抛物线y=ax2在在x轴的上方轴的上方(除顶点外除顶点外),它的开口它的开口向上向上,并且向上无限伸展;并且向上无限伸展;当当a0时时,在对称轴的左侧在对称轴的左侧,y随着随着x的增大而减小;在对称轴的增大而减小;在对称轴右侧右侧,y随着随着x的增大而增大的增大而增大.当当x=0时函数时函数y的值最小的值最小.当当a0时时,抛物线抛物线y=ax2在在x轴的上方(除顶点外)轴的上方(除顶点外),它的开口向它的开口向上上,并且向上无限伸展;并且向上无限伸展;当当a0时时,在对称轴的左侧在对称轴的左侧,y随着随着x的增的增大而减小;大而减小;在对称轴右侧在对称轴右侧,y随着随着x的增大而增大的增大而增大.当当x=0时函数时函数y的值最小的值最小.当当a0时时,在对称轴的左侧在对称轴的左侧,y随着随着x的增大的增大而增大;而增大;在对称轴的右侧在对称轴的右侧,y随着随着x增大而减小增大而减小,当当x=0时时,函数函数y的值最大的值最大.小结 w1.抛物线抛物线y=ax2的顶点是原点的顶点是原点,对称轴是对称轴是y轴轴.驶向胜利的彼岸习题习题23.2 1,2题题独立独立作业作业1说说自己生活中遇到的哪些动物和植物身体的部分轮廓线呈抛物线形状.2设正方形的边长为,面积为,试作出S随a的变化而变化的图象.结束寄语结束寄语只有不断的思考只有不断的思考,才会才会有新的发现有新的发现;只有量的只有量的变化变化,才会有质的进步才会有质的进步.下课了!