直线与平面平行的判定定理(公开课).ppt
2.2.1直线与平面平行的判定云安县云安中学 程宗权复习提问复习提问直线与平面有什么样的位置关系?直线与平面有什么样的位置关系?1.1.直线在平面内直线在平面内有无数个公共点;有无数个公共点;2.2.直线与平面相交直线与平面相交有且只有一个公共点;有且只有一个公共点;3.3.直线与平面平行直线与平面平行没有公共点。没有公共点。aaa思考思考1 1:根据定义,怎样根据定义,怎样判定直线与平面平行?图判定直线与平面平行?图中直线中直线l 和平面和平面平行吗?平行吗?l思考思考2 2:生活中,我们生活中,我们注意到门扇的两边是平注意到门扇的两边是平行的行的.当门扇绕着一边当门扇绕着一边转动时,观察门扇转动转动时,观察门扇转动的一边的一边l 与门框所在平与门框所在平面的位置关系如何?面的位置关系如何?l探究问题,归纳结论探究问题,归纳结论思考思考3 3:若将一本书平放若将一本书平放在桌面上,翻动书的封面,在桌面上,翻动书的封面,观察封面边缘所在直线观察封面边缘所在直线l与桌面所在的平面具有怎样与桌面所在的平面具有怎样的位置关系?的位置关系?思考思考4 4:有一块木料如图,有一块木料如图,P P为面为面BCEFBCEF内一点,要求内一点,要求过点过点P P在平面在平面BCEFBCEF内画一内画一条直线和平面条直线和平面ABCDABCD平行,平行,那么应如何画线?那么应如何画线?lC CA AB BD DE EF FP P思考思考5 5:如图,设直线如图,设直线b b在平面在平面内,直内,直线线a a在平面在平面外,猜想在什么条件下直线外,猜想在什么条件下直线a a与平面与平面平行?平行?b ba aa/ba/b为什么?直线与平面平行的判定定理直线与平面平行的判定定理:符号表示:符号表示:b归纳结论归纳结论(线线平行线面平行)平面外的一条直线与此平面内的一条直平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行线平行,则该直线与此平面平行 .感受校园生活中线面平行的例子感受校园生活中线面平行的例子:天花板平面天花板平面感受校园生活中线面平行的例子感受校园生活中线面平行的例子:球场地面球场地面定理的应用定理的应用 例例1.如图,空间四边形如图,空间四边形ABCD中,中,E、F分别是分别是 AB,AD的中点的中点.求证:求证:EF平面平面BCD.ABCDEF 分析:要证明线面平行只需证明线线平行,分析:要证明线面平行只需证明线线平行,即在平面即在平面BCD内找一条直线内找一条直线 平行于平行于EF,由已,由已知的条件怎样找这条直线?知的条件怎样找这条直线?证明:连结证明:连结BD.BD.AE=EB,AF=FD AE=EB,AF=FD EFBD EFBD(三角形中位线性质)(三角形中位线性质)例例1.如图,空间四边形如图,空间四边形ABCD中,中,E、F分别是分别是 AB,AD的中点的中点.求证:求证:EF平面平面BCD.ABDEF定理的应用定理的应用1.如图,在空间四边形如图,在空间四边形ABCD中,中,E、F分分别为别为AB、AD上的点,若上的点,若 ,则,则EF与平面与平面BCD的位置关系是的位置关系是_.EF/平面平面BCD变式变式1:1:ABCDEF变式变式2:ABCDFOE 2.如图如图,四棱锥四棱锥ADBCE中中,O为底面正方形为底面正方形DBCE对角线的交点对角线的交点,F为为AE的中点的中点.求证求证:AB/平面平面DCF.(04年天津高考年天津高考)分析分析:连结连结OF,可知可知OF为为ABE的中位线的中位线,所以得到所以得到AB/OF.O为正方形为正方形DBCE 对角线的交点对角线的交点,BO=OE,又又AF=FE,AB/OF,BDFO 2.如图如图,四棱锥四棱锥ADBCE中中,O为底面正方形为底面正方形DBCE对角线的交点对角线的交点,F为为AE的中点的中点.求证求证:AB/平面平面DCF.证明证明:连结连结OF,ACE变式变式2:1.线面平行线面平行,通常可以转化为通常可以转化为线线平行线线平行来处理来处理.反思反思领悟:领悟:2.寻找平行直线可以通过寻找平行直线可以通过三角形的中位线、三角形的中位线、梯形的中位线、平行线的判定梯形的中位线、平行线的判定等来完成。等来完成。3、证明的书写三个条件、证明的书写三个条件“内内”、“外外”、“平平行行”,缺一不可。,缺一不可。D1C1B1A1DCBA1.如图如图,长方体长方体ABCD-A1B1C1D1中中,与与AA1平平行行的平面是的平面是_.巩固练习巩固练习:平面平面1、平面、平面CD1 分析:分析:要证要证BD1/平面平面AEC即要在平面即要在平面AEC内找内找一条直线与一条直线与BD1平行平行.根据根据已知条件应该怎样考虑辅已知条件应该怎样考虑辅助线助线?巩固练习巩固练习:2.如图如图,正方体正方体ABCD-A1B1C1D1中,中,E为为DD1的中的中点,求证点,求证:BD1/平面平面AEC.ED1C1B1A1DCBAO 证明证明:连结连结BD交交AC于于O,连结连结EO.O 为矩形为矩形ABCD对角线的交点对角线的交点,DO=OB,又又DE=ED1,BD1/EO.ED1C1B1A1DCBAO巩固练习巩固练习:如图如图,正方体正方体ABCD-A1B1C1D1中,中,E为为DD1的中点,的中点,求证求证:BD1/平面平面AEC.C1ACB1BMNA1如图,三棱柱ABCA1B1C1中,M、N分别是BC和A1B1的中点,求证:MN平面AA1C1CF证明:设A1C1中点为F,连结NF,FCN为A1B1中点,M是BC的中点,NFCM为平行四边形,故MNCF例2:B1C1NF又BCB1C1,MC1/2B1C1即MCNF而CF平面AA1C1C,MN平面AA1C1C,MN平面AA1C1C,大图大图如图如图:ABCD为平行四边形,为平行四边形,M,N分别是分别是AB,PC的中点的中点求证求证MN/面面PADHPABCDNM分析:分析:关键关键在平面在平面PAD内内找找MN平行线,有中点再平行线,有中点再中点找中点,中点和中中点找中点,中点和中点相连得中位线,从而点相连得中位线,从而得到平行线得到平行线。巩固练习巩固练习:例例3 3 在长方体在长方体ABCDABCDA A1 1B B1 1C C1 1D D1 1中中.(1 1)作出过直线)作出过直线ACAC且与直线且与直线BDBD1 1平行的平行的 截面,并说明理由截面,并说明理由.(2 2)设)设E E,F F分别是分别是A A1 1B B和和B B1 1C C的中点,的中点,求证直线求证直线EF/EF/平面平面ABCD.ABCD.ABCC1DA1B1D1EFMG GH HABCDP3.如图,正方体ABCD-A1B1C1D1中,P是平面ABCD上的一点,现需过点P画一条与平面ADB1C1平行的线应该怎么样去完成?巩固练习巩固练习:归纳小结,理清知识体系归纳小结,理清知识体系1.判定直线与平面平行的方法:判定直线与平面平行的方法:(1)定义法:直线与平面没有公共点则线面平行;)定义法:直线与平面没有公共点则线面平行;(2)判定定理:()判定定理:(线线平行线线平行 线面平行线面平行););2.用定理证明线面平行时用定理证明线面平行时,在寻找平行直线可在寻找平行直线可以通过以通过三角形的中位线、梯形的中位线、平三角形的中位线、梯形的中位线、平行线的判定行线的判定等来完成。等来完成。作业:课本P62A3选做题:课本P63B1