欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    八年级下册1721勾股定理的逆定理.ppt

    • 资源ID:82720692       资源大小:584.50KB        全文页数:18页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    八年级下册1721勾股定理的逆定理.ppt

    人教版八年级下册数学人教版八年级下册数学尧头镇学校尧头镇学校赵婷赵婷理解勾股定理的逆定理的证明方法并能证理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。明勾股定理的逆定理。掌握勾股定理的逆定理,并能利用它判断掌握勾股定理的逆定理,并能利用它判断一个三角形是否为直角三角形。一个三角形是否为直角三角形。了解互逆命题和互逆定理的概念了解互逆命题和互逆定理的概念。勾股定理:勾股定理:如果直角三角形两直角如果直角三角形两直角边分别为边分别为a,b,斜边为斜边为c,那么那么BCAbac据说古埃及人用下图的方法画直角:把一根长绳据说古埃及人用下图的方法画直角:把一根长绳打上等距离的打上等距离的1313个结,然后以个结,然后以3 3个结、个结、4 4个结、个结、5 5个结的长度为边长,用木桩钉成一个三角形,个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角你知道为什么吗?其中一个角便是直角你知道为什么吗?三角形的三边有什么关系呢?三角形的三边有什么关系呢?(1)(3)(2)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)你能猜想出其中的数学道理吗?你能猜想出其中的数学道理吗?思考思考如果改变一下三条边的结数,是否还能摆放出同样形如果改变一下三条边的结数,是否还能摆放出同样形状的三角形呢?状的三角形呢?画画看,如果三角形的边长分别为画画看,如果三角形的边长分别为2.5cm,6cm,6.5cm2.5cm,6cm,6.5cm 6.5cm,6.5cm,它们满足关系它们满足关系“2.52.52 2+6+62 2=6.5=6.52 2”吗?用尺规画吗?用尺规画一下,观察三角形是直角三角形吗?一下,观察三角形是直角三角形吗?换成三边长分别为换成三边长分别为4cm4cm,7.5cm7.5cm,8.5cm8.5cm,再试一试,再试一试由此猜想三角形的三边满足怎样的关系,才能得出三由此猜想三角形的三边满足怎样的关系,才能得出三角形是直角三角形呢?角形是直角三角形呢?已知:已知:cabBCAABCABC中,中,AB=c BC=a CA=b AB=c BC=a CA=b 且且a a2 2+b+b2 2=c=c2 2求证:求证:ABCABC是直角三角形是直角三角形证明:证明:画一个画一个RtABC,使使 C=900,BC=a,AC=bcabBCACABab在在RtABCRtABC中,由勾股定理可得:中,由勾股定理可得:ABAB=BC=BC+AC+AC=a=a+b+b,因为因为a a+b+b=c=c,所以所以AB=c,AB=c,在在ABC ABC 和和ABC ABC 中中 AB=AB,BC=BC,AC=AC,AB=AB,BC=BC,AC=AC,所以所以ABCABC(SSS)ABCABC(SSS)所以所以C=C=90C=C=90,即即ABCABC为直角三角形为直角三角形a a2 2+b+b2 2=c=c2 2直角三角形直角三角形cabBCAa a2 2+b+b2 2=c=c2 2题设题设结论结论直角三角形直角三角形直角三角形直角三角形a a2 2+b+b2 2=c=c2 2题设和题设和结论正好相反的两个命题,结论正好相反的两个命题,叫做叫做互逆命题互逆命题其中一个叫做其中一个叫做原命题原命题,另一个叫做,另一个叫做原命题的原命题的逆命题逆命题 如果三角形的三边分别为如果三角形的三边分别为a a、b b、c c,满足,满足a a+b+b=c=c,那么这个三角形是直角三角形,那么这个三角形是直角三角形。如果直角三角形中两条直角边分别为如果直角三角形中两条直角边分别为a a、b b,斜边为,斜边为c c,那么,那么a a+b+b=c=c。勾股定理勾股定理勾股定理的逆定理勾股定理的逆定理互逆命题互逆命题互逆定理互逆定理互逆定理:互逆定理:如果一个定理的逆命题经过证明是正如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,它们称为互逆定理。确的,那么它也是一个定理,它们称为互逆定理。1 1、工厂生产的产品都有一定的规格要求,如图、工厂生产的产品都有一定的规格要求,如图所示:该模板中的所示:该模板中的ABAB、BC BC 相交成直角才符合规相交成直角才符合规定。你能测出这个零件是否合格呢?定。你能测出这个零件是否合格呢?(身边只有身边只有刻度尺刻度尺)ABC分析分析:要判断要判断ABAB、BC BC 相相交成直角,即要证明三角形交成直角,即要证明三角形ABCABC是直角三角形,根据勾是直角三角形,根据勾股定理的逆定理可知,需证股定理的逆定理可知,需证明明ABAB+BC+BC=AC=AC.即需要测量即需要测量出出AB,BC,ACAB,BC,AC三边的长度。三边的长度。、判断由线段、判断由线段a,b,c组成的三角形是不是直组成的三角形是不是直角三角形?角三角形?(1 1)a=13,b=14,c=15;a=13,b=14,c=15;(2)a=15,b=8,c=17;(2)a=15,b=8,c=17;(3)a=7,b=24,c=25;(3)a=7,b=24,c=25;分析:根据勾股定理的逆定理,判断一个三角形是分析:根据勾股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小的边长的平方和不是直角三角形,只要看两条较小的边长的平方和是否等于最长边长的平方是否等于最长边长的平方。解解(1 1)1313+14+141515aa+b+bccABCABC不是直角三角形。不是直角三角形。(2 2)8 8+15+15=18=18 b b+a+a=c=cABCABC是直角三角形。是直角三角形。(3 3)7 7+24+24=25=25 a a+b+b=c=cABCABC是直角三角形是直角三角形注意事项注意事项(1 1)书写格式,不要弄错了勾股定理的逆定)书写格式,不要弄错了勾股定理的逆定理的条件和结论。理的条件和结论。(2 2)分清何时用勾股定理,何时用勾股定理)分清何时用勾股定理,何时用勾股定理的逆定理的逆定理勾股数:勾股数:像像1515、8 8、1717这样,能够成为直角三这样,能够成为直角三角形三边长的三个正整数,称为角形三边长的三个正整数,称为勾股数勾股数。说明:三个数必须是正整数,例如:说明:三个数必须是正整数,例如:2.5,6,6.52.5,6,6.5满足满足2.52.5+6=6.5,但是它不是,但是它不是勾股数。勾股数。3 3、请指出下列命题的逆命题。、请指出下列命题的逆命题。(1 1)两直线平行,同位角相等。)两直线平行,同位角相等。逆命题:逆命题:同位角相等,两直线平行。同位角相等,两直线平行。(2 2)对顶角相等。)对顶角相等。逆命题:逆命题:如果两个角相等,那么它们是对顶角如果两个角相等,那么它们是对顶角。(3 3)如果两个实数相等,那么它们的绝对值)如果两个实数相等,那么它们的绝对值相等。相等。逆命题:逆命题:如果两个实数的绝对值相等,那么这如果两个实数的绝对值相等,那么这两个实数相等。两个实数相等。(4 4)全等三角形的对应边相等。)全等三角形的对应边相等。逆命题:逆命题:对应边相等的两个三角形全等。对应边相等的两个三角形全等。5 5、古希腊的哲学家柏拉图曾指出:如果、古希腊的哲学家柏拉图曾指出:如果m m表示大于的整数,表示大于的整数,a=2ma=2m,b=mb=m2 2-1,c=m-1,c=m2 2+1,+1,那么那么a a、b b、c c为勾股数,你认为对吗?为勾股数,你认为对吗?收获 心得谈谈这节课你的收获吧!谈谈这节课你的收获吧!

    注意事项

    本文(八年级下册1721勾股定理的逆定理.ppt)为本站会员(s****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开