171勾股定理第二课时11.ppt
结论变形c2=a2 +b2abcABC 有一种特殊的直角三角形,有一种特殊的直角三角形,已知一边可以求另外两边长已知一边可以求另外两边长ACBbac45ACBbac30 a:b:c=1:1:2 a:b:c=1:3:2a=5 cm时求b=?c=?c=6 cm时求b=?a=?勾股小常识:勾股数勾股小常识:勾股数 1、基本勾股数如:基本勾股数如:大家一定要熟记大家一定要熟记 2、如果、如果a,b,c是一组勾股数,则是一组勾股数,则ka、kb、kc(k为正为正整数)也是一组勾股数,整数)也是一组勾股数,如:如:6、8、10 ;9、12、1510、24、26;15、36、39例例1 1、已知:在已知:在RtABCRtABC中,中,C=90C=90,CDABCDAB于于D D,A=60,CD=,A=60,CD=,求线段求线段ABAB的长的长.变式训练:变式训练:ABCABC中中,AB=10,AC=17,AB=10,AC=17,BCBC边上的高边上的高线线AD=8,AD=8,求线段求线段BCBC的长和的长和ABCABC的面积的面积.ABC17108D8615621 或或9SABC=84或或36 当题中没有给出图形时,应考虑图形的形状当题中没有给出图形时,应考虑图形的形状是否确定,如果不确定,就需要分类讨论。是否确定,如果不确定,就需要分类讨论。15例例2 2、在在ABCABC中,中,C=30C=30,AC=4cm,AB=3cmAC=4cm,AB=3cm,求求BCBC的长的长.D勾股定理在非直角三角形中的应用:见特殊角勾股定理在非直角三角形中的应用:见特殊角作高构造直角三角形作高构造直角三角形.变式变式1 1、在在ABCABC中,中,B=120B=120,BC=4cmBC=4cm,AB=6cmAB=6cm,求,求ACAC的长的长.D D变式变式2 2、在等腰在等腰ABCABC中,中,ABABACAC13cm 13cm,BC=10cm,BC=10cm,求求ABCABC的面积和的面积和ACAC边上的高边上的高.两个直角三角形中,如果有一条公共边,可两个直角三角形中,如果有一条公共边,可利用勾股定理建立方程求解利用勾股定理建立方程求解.变式变式3 3、已知:如图,已知:如图,ABCABC中,中,AB=26AB=26,BC=25BC=25,AC=17AC=17,求,求ABCABC的面积的面积.方程思想:方程思想:两个直角三角形中,如果有一条两个直角三角形中,如果有一条公共边,可利用勾股定理建立方程求解公共边,可利用勾股定理建立方程求解.D D例例3 3、已知:如图,已知:如图,B=D=90,A=60B=D=90,A=60,AB=4AB=4,CD=2.CD=2.求四边形求四边形ABCDABCD的面积的面积.A AB BC CO Ox xy y变式训练变式训练:如图,在平面直角坐标系中,点:如图,在平面直角坐标系中,点C C的坐的坐标为(标为(0 0,4 4),),B=90B=90,BCO=60BCO=60,AB=2AB=2,求,求点点B B的坐标的坐标.例例4 4、如图,在如图,在RtABCRtABC中,中,C=90C=90,ADAD平平分分BACBAC,AC=6cm AC=6cm,BC=8cmBC=8cm,(,(1 1)求线段)求线段CDCD的长;(的长;(2 2)求)求ABDABD的面积的面积.xx8-x664方程思想:方程思想:直角三直角三角形中,已知一条角形中,已知一条边,以及另外两条边,以及另外两条边的数量关系时,边的数量关系时,可利用勾股定理建可利用勾股定理建立方程求解立方程求解.DCBAE810变式练习:变式练习:如图,在直角坐标系中,如图,在直角坐标系中,ABO ABO的顶点的顶点A A为(为(0 0,6 6),),B B为(为(8 8,0 0),),ADAD平分平分BAOBAO交交x x轴于点轴于点D D,DEAB DEAB于于E.E.(1 1)求)求ABDABD的面积;的面积;(2 2)求点)求点E E的坐标的坐标.例例3:在我国古代数学著作九章算术中记载了一道有趣的问题在我国古代数学著作九章算术中记载了一道有趣的问题这个问题意思是:有一个水池,水面是一个边长为这个问题意思是:有一个水池,水面是一个边长为10尺的正方形尺的正方形,在水池的中央有一根新生的芦苇,它高出水面在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦尺,如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度和这根芦苇的长度各是多少?和这根芦苇的长度各是多少?DABC解解:设水池的深度设水池的深度AC为为X米米,则芦苇高则芦苇高AD为为(X+1)米米.根据题意得根据题意得:BC2+AC2=AB252+X2=(X+1)225+X2=X2+2X+1 X=12 X+1=12+1=13(米)答答:水池的深度为水池的深度为12米米,芦苇高为芦苇高为13米米.如图,小颍同学折叠一个直角三角形如图,小颍同学折叠一个直角三角形的纸片,使的纸片,使A与与B重合,折痕为重合,折痕为DE,若已知,若已知AC=10cm,BC=6cm,你能求出你能求出CE的长吗?的长吗?ECABDx10-x6练习练习5(1)已知直角三角形两边的长分别已知直角三角形两边的长分别是是3cm和和6cm,则第三边的长是,则第三边的长是 .(2)ABC中,中,AB=AC=2,BD是是AC边边上的高,且上的高,且BD与与AB的夹角为的夹角为300,求,求CD的长的长.分类思想分类思想 1.1.直角三角形中,已知两边长直角三角形中,已知两边长,求第三求第三边时边时,应分类讨论。应分类讨论。2.2.当已知条件中没有给出图形时,应认真当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。读句画图,避免遗漏另一种情况。例例7 7(1 1)直角三角形中,斜边与一直角边相直角三角形中,斜边与一直角边相差差8 8,另一直角边为,另一直角边为1212,求斜边的长,求斜边的长.例例7 7(2 2)如图,有一块直角三角形纸片,两如图,有一块直角三角形纸片,两直角边直角边AC=6cmAC=6cm,BC=8cmBC=8cm,现将直角边,现将直角边ACAC沿直沿直线线ADAD折叠,使它落在斜边折叠,使它落在斜边ABAB上,且与上,且与AEAE重合,重合,求求CDCD的长的长.xx8-x664方程思想:方程思想:直角三直角三角形中,已知一直角形中,已知一直角边,以及另一直角边,以及另一直角边和斜边的等量角边和斜边的等量关系,可建立方程关系,可建立方程求解求解.例例2:如图,铁路上如图,铁路上A,B两点相距两点相距25km,C,D为两庄,为两庄,DAAB于于A,CBAB于于B,已知,已知DA=15km,CB=10km,现在要在铁路现在要在铁路AB上建一个土特产品收购站上建一个土特产品收购站E,使得,使得C,D两村到两村到E站的距离相等,则站的距离相等,则E站应建在离站应建在离A站多少站多少km处?处?CAEBDx25-x解:解:设设AE=x km,根据勾股定理,得根据勾股定理,得 AD2+AE2=DE2 BC2+BE2=CE2又又 DE=CE AD2+AE2=BC2+BE2即:即:152+x2=102+(25-x)2答:答:E站应建在离站应建在离A站站10km处。处。X=10则则 BE=(25-x)km1510