新编基础物理学课后答案.doc
新编基础物理学课后答案习题一1-1.质点运动学方程为:其中a,b,均为正常数,求质点速度和加速度与时间的关系式。分析:由速度、加速度的定义,将运动方程对时间t求一阶导数和二阶导数,可得到速度和加速度的表达式。解:1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即, 式中K为常量试证明电艇在关闭发动机后又行驶x距离时的速度为 。 其中是发动机关闭时的速度。分析:要求可通过积分变量替换,积分即可求得。证: , 1-3一质点在xOy平面内运动,运动函数为。(1)求质点的轨道方程并画出轨道曲线;(2)求时质点的位置、速度和加速度。分析:将运动方程x和y的两个分量式消去参数t,便可得到质点的轨道方程。写出质点的运动学方程表达式。对运动学方程求一阶导、二阶导得和,把时间代入可得某时刻质点的位置、速度、加速度。解:(1)由得:代入 可得:,即轨道曲线。画图略(2)质点的位置可表示为: 由则速度: 由则加速度:则:当t=1s时,有当t=2s时,有1-4一质点的运动学方程为,x和y均以m为单位,t以s为单位。(1)求质点的轨迹方程;(2)在时质点的速度和加速度。分析同1-3.解:(1)由题意可知:x0,y0,由,可得,代入 整理得:,即轨迹方程 (2)质点的运动方程可表示为: 则: 因此, 当时,有1-5一质点沿半径为R的圆周运动,运动学方程为,其中v0,b都是常量。(1)求t时刻质点的加速度大小及方向;(2)在何时加速度大小等于b; (3)到加速度大小等于b时质点沿圆周运行的圈数。分析:由质点在自然坐标系下的运动学方程,求导可求出质点的运动速率,因而,当时,可求出t,代入运动学方程,可求得时质点运动的路程,即为质点运动的圈数。解:(1)速率:,且 加速度: 则大小: 方向: (2)当a=b时,由可得:(3)当a=b时,代入可得: 则运行的圈数 1-9汽车在半径为400m的圆弧弯道上减速行驶,设在某一时刻,汽车的速率为,切向加速度的大小为。求汽车的法向加速度和总加速度的大小和方向。分析:由某一位置的、求出法向加速度,再根据已知切向加速度求出的大小和方向。解:法向加速度的大小 方向指向圆心总加速度的大小如图1-9,则总加速度与速度夹角1-10. 质点在重力场中作斜上抛运动,初速度的大小为,与水平方向成角求质点到达抛出点的同一高度时的切向加速度,法向加速度以及该时刻质点所在处轨迹的曲率半径(忽略空气阻力)已知法向加速度与轨迹曲率半径之间的关系为。分析:运动过程中,质点的总加速度。由于无阻力作用,所以回落到抛出点高度时质点的速度大小,其方向与水平线夹角也是。可求出,如图1-10。再根据关系求解。解:切向加速度 法向加速度 因 1-13离水面高为h的岸上有人用绳索拉船靠岸,人以恒定速率v0拉绳子,求当船离岸的距离为s时,船的速度和加速度的大小。分析:收绳子速度和船速是两个不同的概念。小船速度的方向为水平方向,由沿绳的分量与垂直绳的分量合成,沿绳方向的收绳的速率恒为。可以由求出船速和垂直绳的分量。再根据关系,以及与关系求解。解:如图1-13, 船速 当船离岸的距离为s时, 则, 即:第二章213一质量为m的小球最初位于如图2-13所示的A点,然后沿半径为r的光滑圆轨道ADCB下滑,试求小球到达C点时的角速度和对圆轨道的作用力.题图213分析:如图213,对小球做受力分析,合力提供向心力,由牛顿第二定律,机械能守恒定律求解。解:又:图213由、可得: 由、可得,214质量为m的摩托车,在恒定的牵引力F的作用下工作,它所受的阻力与其速率的平方成正比,它能达到最大速率是 试计算从静止加速到所需的时间以及所走过的路程。分析:加速度等于零时,速度最大,阻力为变力,积分求时间、路程。解:设阻力,则加速度,当a=0时,速度达到最大值,则有:又,即:题图215,即所求的时间对式两边同乘以dx,可得:2-15如图2-15所示,A为定滑轮,B为动滑轮,3个物体的质量分别为m1=200g,m2=100g,m3=50g.(1)求每个物体的加速度(2)求两根绳中的张力(滑轮和绳子质量不计,绳子的伸长和摩擦力可略)。分析:相对运动。相对地运动,、相对B运动,。根据牛顿牛顿定律和相对运动加速度的关系求解。解:如下图2-15,分别是m1、m2、m3的受力图。设a1、a2、a3、a分别是m1、m2、m3、B对地的加速度;a2B、a3B分别是m2、m3对B的加速度,以向上为正方向,可分别得出下列各式图215又:且:则:则:又:则由,可得:(2)将a3的值代入式,可得:。2-34设。(1)当一质点从原点运动到时,求所作的功;(2)如果质点到处时需0.6s,试求的平均功率;(3)如果质点的质量为1kg,试求动能的变化。 分析:由功、平均功率的定义及动能定理求解,注意:外力作的功为F所作的功与重力作的功之和。解:(1) ,做负功(2)(3) = -45+ = -85J题图2-372-37求把水从面积为的地下室中抽到街道上来所需作的功。已知水深为1.5m,水面至街道的竖直距离为5m。 分析:由功的定义求解,先求元功再积分。解:如图以地下室的O为原点,取X坐标轴向上为正,建立如图坐标轴。选一体元,则其质量为。把从地下室中抽到街道上来所需作的功为 故2-41一沿x轴正方向的力作用在一质量为3.0kg的质点上。已知质点的运动方程为,这里以m为单位,时间以s为单位。试求:(1)力在最初内作的功;(2)在时,力的瞬时功率。 分析:由速度、加速度定义、功能原理、牛顿第二定律求解。解:则 由功能原理,有(2)时,则瞬时功率242.以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,若铁锤击第一次时,能将小钉击入木板内1cm,问击第二次时能击入多深?(假定铁锤两次打击铁钉时的速度相同。) 分析:根据功能原理,因铁锤两次打击铁釘时速度相同,所以两次阻力的功相等。注意:阻力是变力。解:设铁钉进入木板内时,木板对铁钉的阻力为由于铁锤两次打击铁钉时的速度相同,故所以,。第二次时能击入深。243从地面上以一定角度发射地球卫星,发射速度应为多大才能使卫星在距地心半径为r的圆轨道上运转? 分析:地面附近万有引力即为重力,卫星圆周运动时,万有引力提供的向心力,能量守恒。解:设卫星在距地心半径为r的圆轨道上运转速度为v, 地球质量为M, 半径为,卫星质量为m.根据能量守恒,有又由卫星圆周运动的向心力为卫星在地面附近的万有引力即其重力,故联立以上三式,得244一轻弹簧的劲度系数为,用手推一质量的物体A把弹簧压缩到离平衡位置为处,如图2-44所示。放手后,物体沿水平面移动距离而停止,求物体与水平面间的滑动摩擦系数。 分析:系统机械能守恒。 解:物体沿水平面移动过程中,由于摩擦力做负功,致使系统(物体与弹簧)的弹性势能全部转化为内能(摩擦生热)。根据能量关系,有题图245所以,题图244248一人从10 m深的井中提水起始时桶中装有10 kg的水,桶的质量为1 kg,由于水桶漏水,每升高1 m要漏去0.2 kg的水求水桶匀速地从井中提到井口,人所作的功 分析:由于水桶漏水,人所用的拉力F是变力,变力作功。解:选竖直向上为坐标y轴的正方向,井中水面处为原点. 由题意知,人匀速提水,所以人所用的拉力F等于水桶的重量即: 人的拉力所作的功为: 2-51一个具有单位质量的质点在力场中运动,其中t是时间,设该质点在时位于原点,且速度为零,求s时该质点受到的对原点的力矩和该质点对原点的角动量。 分析:由牛顿定律、力矩、角动量定义求解。解:对质点由牛顿第二律有 又因为所以得同样由 得所以t=2时 2-54在光滑的水平桌面上,用一根长为的绳子把一质量为m的质点联结到一固定点O. 起初,绳子是松弛的,质点以恒定速率沿一直线运动。质点与O最接近的距离为b,当此质点与O的距离达到时,绳子就绷紧了,进入一个以O为中心的圆形轨道。(1)求此质点的最终动能与初始动能之比。能量到哪里去了?(2)当质点作匀速圆周运动以后的某个时刻,绳子突然断了,它将如何运动,绳断后质点对O的角动量如何变化? 分析:绳子绷紧时,质点角动量守恒。解:(1)当质点做圆周运动时,可得其速度所以最终动能与初始动能之比,其他能量转变为绳子的弹性势能,以后转化为分子内能.(2)绳子断后,质点将按速度沿切线方向飞出,做匀速直线运动质点对0点的角动量恒量。第三章题图3-23-2 如题图3-2所示,一根均匀细铁丝,质量为M,长度为,在其中点O处弯成角,放在平面内,求铁丝对轴、轴、轴的转动惯量。分析:取微元,由转动惯量的定义求积分可得解:(1)对x轴的转动惯量为:(2)对y轴的转动惯量为:(3)对Z轴的转动惯量为:3-5 一质量为的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如题图3-5所示轴水平且垂直于轮轴面,其半径为,整个装置架在光滑的固定轴承之上当物体从静止释放后,在时间内下降了一段距离试求整个轮轴的转动惯量(用表示) 分析:隔离物体,分别画出轮和物体的受力图,由转动定律和牛顿第二定律及运动学方程求解。题图3-5解:设绳子对物体(或绳子对轮轴)的拉力为T,则根据牛顿运动定律和转动定律得: b 题图3-5由运动学关系有: 由、式解得: 又根据已知条件 , 将式代入式得: 3-7 如题图3-7所示,质量为m的物体与绕在质量为M的定滑轮上的轻绳相连,设定滑轮质量M=2m,半径R,转轴光滑,设,求:(1)下落速度与时间t的关系;(2)下落的距离;(3)绳中的张力T。分析:对质量为m物体应用牛顿第二定律、对滑轮应用刚体定轴转动定律列方程。解:(1)设物体m与滑轮间的拉力大小为T,则题图3-7 解:式得,并代入式得(2)设物体下落的距离为s,则(3)由(1)的式得,3-8 如题图3-8所示,一个组合滑轮由两个匀质的圆盘固接而成,大盘质量,半径,小盘质量,半径。两盘边缘上分别绕有细绳,细绳的下端各悬质量的物体,此物体由静止释放,求:两物体的加速度大小及方向。分析:分别对物体应用牛顿第二定律,对滑轮应用刚体定轴转动定律解:设物体的加速度大小分别为与滑轮的拉力分别为题图3-8 把数据代入,解上述各式得 方向向上 方向向下3-9 如题图3-9所示,一倾角为30°的光滑斜面固定在水平面上,其上装有一个定滑轮,若一根轻绳跨过它,两端分别与质量都为m的物体1和物体2相连。(1)若不考虑滑轮的质量,求物体1的加速度。(2)若滑轮半径为r,其转动惯量可用m和r表示为(k是已知常量),绳子与滑轮之间无相对滑动,再求物体1的加速度。分析:(1)对两物体分别应用牛顿第二定律列方程。(2)两物体分别应用牛顿第二定律、对滑轮应用刚体定轴转动定律列方程。解:设物体1、物体2与滑轮间的拉力分别为、它们对地的加速度为a。(1)若不考虑滑轮的质量,则物体1、物体2与滑轮间的拉力、相等,记为T。则对1、2两物体分别应用牛顿第二定律得,题图3-9解上两式得:,方向竖直向下。(2)若考虑滑轮的质量,则物体1、物体2与滑轮间的拉力、不相等。则对1、2两物体分别应用牛顿第二定律,和对滑轮应用刚体定轴转动定律得解上述各式得:,方向竖直向下。3-11 一质量为M,长为的匀质细杆,一端固接一质量为m的小球,可绕杆的另一端无摩擦地在竖直平面内转动,现将小球从水平位置A向下抛射,使球恰好通过最高点C,如题图3-11所示。求:(1)下抛初速度;(2)在最低点B时,细杆对球的作用力。分析:由机械能守恒定律、牛顿第二定律、角线量关系求解。解:(1)如图3-11,取向下抛点作势能零点,由机械能守恒定律得,题图3-11J=解得,(2)取最低点作势能零点,由机械能守恒定律和牛顿第二定律得, 解:得,3-16 一长为L、质量为m的匀质细棒,如题图3-16所示,可绕水平轴在竖直面内旋转,若轴光滑,今使棒从水平位置自由下摆。求:(1)在水平位置和竖直位置棒的角加速度;(2)棒转过角时的角速度。分析:由转动定律求角加速度,由在转动过程中机械能守恒求角速度。解:(1)有刚体定轴转动定律得,题图3-16细棒在水平位置的角加速度为:细棒在竖直位置的角加速度为:(2)细棒在转动的过程中机械能守恒,由机械能守恒定律得,解上述两式得:3-19 质量为的子弹,以速度水平射入放在光滑水平面上质量为、半径为R的圆盘边缘,并留在该处,的方向与射入处的半径垂直,圆盘盘心有一竖直的光滑固定轴,如所示,试求子弹射入后圆盘的角速度。分析:在子弹射入圆盘的过程中,子弹和圆盘组成的系统对转轴的角动量和力矩为零,因此对转轴的角动量守恒。解:设子弹射入后圆盘的角速度为,则由角动量守恒定律得,题图3-19解上式得:3-20一均质细杆,长,可绕通过一端的水平光滑轴O在铅垂面内自由转动,如题图3-20所示。开始时杆处于铅垂位置,今有一子弹沿水平方向以的速度射入细杆。设入射点离O点的距离为 ,子弹的质量为细杆质量的。试求:(1)子弹和细杆开始共同运动的角速度。(2)子弹和细杆共同摆动能到达的最大角度。分析:子弹射入细杆过程中,子弹和细杆组成的系统角动量守恒;细杆摆动时,机械能守恒。解(1)子弹打进杆的过程中子弹和杆组成的系统角动量守恒,设子弹开始时的角速度为,弹和杆一起共同运动的角速度为,则由角动量守恒定律得: O题图3-20又把式代入式并解得: (2)设子弹与杆共同摆动能达到最大角度为角,在摆动的过程中杆和子弹及地球组成的系统机械能守恒,则由机械能守恒定律得, 把式及,L=1代入式解得:。即第四章4-2 长度为1m的米尺L静止于中,与轴的夹角系相对系沿轴运动,在系中观察得到的米尺与轴的夹角为,试求:(1)系相对系的速度是多少?(2)系中测得的米尺的长度?分析:本题考察的是长度收缩效应。根据两个参考系下米尺的不同长度再结合长度收缩效应我们可以很方便的得到两个参考系之间的相对速度解:(1)米尺相对系静止,它在轴的投影分别为:米尺相对S系沿x方向运动,设运动速度为v,为S系中的观察者,米尺在x方向将产生长度收缩,而y方向的长度不变,即故米尺与x轴的夹角满足将与、的值代入可得:(2)在S系中测得米尺的长度为:4-3 已知介子在其静止系中的半衰期为。今有一束介子以的速度离开加速器,试问,从实验室参考系看来,当介子衰变一半时飞越了多长的距离?分析:本题考察的是时间膨胀效应。根据静止系中的半衰期加上时间膨胀效应我们可以求出在实验室参考系中的半衰期,然后根据该半衰期求出飞行距离。解:在介子的静止系中,半衰期是本征时间。由时间膨胀效应,实验室参系中的观察者测得的同一过程所经历的时间为:因而飞行距离为:4-4 在某惯性系K中,两事件发生在同一地点而时间相隔为。已知在另一惯性系中,该两事件的时间间隔为,试问它们的空间间隔是多少?分析:本题考察的是时间膨胀效应以及洛伦兹变换。根据时间膨胀效应我们可以求出两参考系的相对速度,继而根据洛伦兹变换演化出空间间隔变换的公式求出该两事件在S系中的空间间隔。解:在k系中,为本征时间,在系中的时间间隔为 两者的关系为:故两惯性系的相对速度为:由洛伦兹变换,系中两事件的空间间隔为:两件事在K系中发生在同一地点,因此有,故4-5 惯性系相对另一惯性系沿x轴作匀速运动,取两坐标原点重合的时刻作为计时起点。在系中测得两事件的时空坐标分别为以及,已知在系中测得该两事件同时发生。试问:(1)系相对系的速度是多少?(2)系中测得的两事件的空间间隔是多少?分析:本题所考察的是洛伦兹变换的应用问题。根据洛伦兹变换在不同参考系下两个事件的时间变换关系,我们可以很方便的得到两个参考系之间的相对速度。有了相对速度以后,再根据洛伦兹变换的空间变换关系,我们可以得到两事件的空间间隔。解:(1)设系相对S系的速度为v,由洛伦兹变换,系中测得两事件的时间为:由题意,因此有其中负号表示系沿系的方向运动。(2)由洛伦兹变换,系中测得的两事件的空间位置为:故空间间隔为:4-6 (1)火箭A和B分别以的速度相对于地球向方向飞行,试求由火箭B测得的A的速度。(2)若火箭A相对地球以0.8c的速度向方向运动,火箭B的速度不变,试问A相对B的速度是多少?分析:本题考察的是洛伦兹速度变换。在火箭B为静止的参考系中,先求出地面参考系相对此参考系的运动速度(此即为两个参考系之间的相对速度),然后由火箭A相对地面的运动速度以及洛伦兹速度变换公式求出火箭A相对火箭B的速度。解:(1)设火箭B的静止系为S,则地面参考系相对S的运动速度为。在地面参考系中,火箭A的运动速度为,由洛伦兹速度变换公式可得火箭A相对火箭B的运动速度为:(2)由于S系相对地面参考系以方向飞行,而在地面参考系中火箭A的运动速度为。则根据洛伦兹速度变换公式在S系中火箭A的运动速度为:所以火箭A相对火箭B的速度为:4-8 子的静止质量是电子静止质量的207倍,静止时的平均寿命,若它在实验室参考系中的平均寿命,试问其质量是电子静止质量的多少倍?分析:本题考察的是时间膨胀效应和相对论质量问题。根据时间膨胀效应我们可以求出该粒子在实验室参考系中的运动速度,然后根据该速度可以求出速度下的相对论质量。解:设子在实验室参考系中的速度为、质量为,依题意有:将的值代入得:当子速度为时其质量为:4-11 已知一粒子的动能等于其静止能量的n倍,试求该粒子的速率。分析:该题考察的是相对论的质能关系式。根据粒子的动能和静能比可以求出该粒子总能量和静能之比,这个比值也就是该粒子的质量与静止质量之比,根据相对论质量与速度的关系式,我们可以求出该粒子的速率,从而求出该粒子的动量。解:依题意有:所以其质量与静止质量之比为:根据相对论质量与速度的关系有:所以该粒子的速度为:4-17 把一个静止质量为的粒子由静止加速到0.1c所需的功是多少?由速率0.89c加速到0.99c所需的功又是多少?分析:此题涉及到的是粒子的总能量与速度之间的关系。根据能量守恒定律,通过计算任一速度下的总能量即可求出从该速度下再增加0.1c的速度所需要做的功。解:粒子的静能量为:速度为0.1c时,该粒子的总能量为:因此将粒子由静止加速到0.1c所需要做的功为:同理粒子在速度为0.89c和0.99c时的总能量分别为: 所以将粒子由0.89c加事到0.99c时所需做的功为第五章5-5一放置在水平桌面上的弹簧振子,振幅,周期T=0.5s,当t=0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在处,向负方向运动;(4)物体在处,向负方向运动.求以上各种情况的振动方程。分析 根据旋转矢量图由位移和速度确定相位。进而得出各种情况的振动方程。解:设所求振动方程为:由A旋转矢量图可求出题图5-5(1)(2)(3)(4)5-8有一弹簧,当下面挂一质量为的物体时,伸长量为.若使弹簧上下振动,且规定向下为正方向.(1)当t0时,物体在平衡位置上方,由静止开始向下运动,求振动方程.(2) 当t0时,物体在平衡位置并以0.6m/s的速度向上运动,求振动方程.分析 根据初始条件求出特征量建立振动方程。解:设所求振动方程为:其中角频率,代入数据得:(1)以平衡位置为原点建立坐标,根据题意有:据得:据得由于0,不妨取于是,所求方程为:(2)以平衡位置为原点建立坐标,根据题意有:据得:据得由于,应取于是,所求方程为:5-16一物体沿x轴作简谐振动,振幅为0.06m,周期为2.0s,当t=0时位移为,且向轴正方向运动,求:(1)t=0.5s时,物体的位移、速度和加速度;(2)物体从处向x轴负方向运动开始,到达平衡位置,至少需要多少时间?分析 通过旋转矢量法确定两位置的相位从而得到最小时间。解:设该物体的振动方程为依题意知:据得由于,应取可得:(1)时,振动相位为:据得(2)由A旋转矢量图可知,物体从m处向x轴负方向运动,到达平衡位置时,A矢量转过的角度为,该过程所需时间为:题图5-165-18 有一水平的弹簧振子,弹簧的劲度系数K=25N/m,物体的质量m=1.0kg,物体静止在平衡位置.设以一水平向左的恒力F=10 N作用在物体上(不计一切摩擦),使之由平衡位置向左运动了0.05m,此时撤除力F,当物体运动到最左边开始计时,求物体的运动方程.分析 恒力做功的能量全部转化为系统能量,由能量守恒可确定系统的振幅。解: 设所求方程为题图5-18因为不计摩擦,外力做的功全转变成系统的能量,故故所求为 5-23 一物体质量为0.25Kg,在弹性力作用下作简谐振动,弹簧的劲度系数k=25N/m,如果起始振动时具有势能0.06J和动能0.02J,求:(1)振幅;(2)动能恰等于势能时的位移;(3)经过平衡位置时物体的速度.分析 简谐振动能量守恒,其能量由振幅决定。解:5-25两个同方向的简谐振动的振动方程分别为: 求:(1)合振动的振幅和初相;(2)若另有一同方向同频率的简谐振动,则为多少时,的振幅最大?又为多少时,的振幅最小?分析 合振动的振幅由其分振动的相位差决定。解:(1)按合成振动公式代入已知量,可得合振幅及初相为 所以,合振动方程为(2)当,即时,的振幅最大.当,即时,的振幅最小.5-26有两个同方向同频率的振动,其合振动的振幅为,合振动的相位与第一个振动的相位差为,第一个振动的振幅为,求第二个振动的振幅及两振动的相位差。分析 根据已知振幅和相位可在矢量三角形中求得振幅。解:采用旋转矢量合成图求解取第一个振动的初相位为零,则合振动的相位为题图5-26据可知,如图:由于、的量值恰好满足勾股定理,故与垂直.即第二振动与第一振动的相位差为第六章6-4 有一平面谐波在空间传播,如题图64所示.已知A点的振动规律为,就图中给出的四种坐标,分别写出它们波的表达式.并说明这四个表达式中在描写距A点为b处的质点的振动规律是否一样? 分析 无论何种情况,只需求出任意点x与已知点的相位差,同时结合相对坐标的传播方向(只考虑相对于坐标方向的正负关系)即可求解波的表达。只要把各种情况中b的坐标值分别代入相应的波动方程就可求得b点的振动规律。题图6-4解: 设其波长为,选o点处为坐标原点,由方程;可得取图中 所示的坐标,则x处质点的振动比A点滞后,故(2)(1)题图6-20题图6-4同理可得要求距A为b的点的振动规律,只要把各种情况中b的坐标值分别代入相应的波动方程就可求得.从结果可知,取不同的坐标只是改变了坐标的原点,波的表达式在形式上有所不同,但b点的振动方程却不变.即题图6-56-5一平面简谐波沿x轴正向传播,其振幅为A,频率为,波速为u.设时刻的波形曲线如题图65所示.求(1)x=0处质点振动方程;(2)该波的波方程.分析 由于图中是时刻波形图,因此,对x=0处质点,由图得出的相位也为时刻的相位。再由旋转矢量推算出t=0时刻的初相位。进而写出波动方程。解:(1)设处质点的振动方程为 。由图可知,时 ,。所以处的振动方程为:(2)该波的表达式为: BA题图6-86-8如题图6-8所示,一平面波在介质中以波速沿x轴负方向传播,已知A点的振动方程为. (1)以A点为坐标原点写出波方程;(2)以距A点5m处的B点为坐标原点,写出波方程.分析 由波相对坐标轴的传播方向和已知点的振动方程直接写出波方程。解:(1)坐标为x处质点的振动相位为 波的表达式为 (2)以B点为坐标原点,则坐标为x点的振动相位为 波的表达式为 6-10 一平面谐波沿ox轴的负方向传播,波长为,P点处质点的振动规律如题图610所示.求:(1)P点处质点的振动方程;(2)此波的波动方程;(3)若图中,求O点处质点的振动方程.分析 首先由已知振动规律结合旋转矢量图可得P点振动的初相与周期,从而得到其振动方程。波动方程则由P与原点的距离直接得到。波动方程中直接代入某点的坐标就可求出该点的振动方程。题图6-10解:(1)从图中可见,且,则P点处质点的振动方程为 (2)向负方向传播的波动方程为(3)把代入波动方程即得第十五章15-1.在双缝干涉实验中,两缝的间距为0.6mm,照亮狭缝的光源是汞弧灯加上绿色滤光片在2.5m远处的屏幕上出现干涉条纹,测得相邻两明条纹中心的距离为2.27mm试计算入射光的波长,如果所用仪器只能测量的距离,则对此双缝的间距有何要求?分析:由明纹位置公式求解。解:在屏幕上取坐标轴,坐标原点位于关于双缝的对称中心。屏幕上第级明纹中心的距坐标原点距离:可知 代入已知数据,得 对于所用仪器只能测量的距离时 15-2.在杨氏双缝实验中,设两缝之间的距离为0.2mm在距双缝1m远的屏上观察干涉条纹,若入射光是波长为400nm至760nm的白光,问屏上离零级明纹20mm处,哪些波长的光最大限度地加强?(1nm10-9m)分析:由双缝干涉屏上明纹位置公式,求K取整数时对应的可见光的波长。解:已知:d0.2mm,D1m,x20mm 依公式: 4×10-3 mm4000nm 故 k10 l1400nm k9 2444.4nm k8 3500nm k7 4571.4nm k6 5666.7nm这五种波长的光在所给观察点最大限度地加强 15-6.在双缝干涉实验中,单色光源S0到两缝S1和S2的距离分别为和,并且,为入射光的波长,双缝之间的距离为d,双缝到屏幕的距离为D(D>>d),如图15-6求: (1) 零级明纹到屏幕中央O点的距离 (2) 相邻明条纹间的距离 解:(1) 如图,设P0为零级明纹中心 则 又 (2) 在屏上距O点为x处, 光程差 明纹条件 (k1,2,.) 在此处令k0,即为(1)的结果相邻明条纹间距15-8.在折射率n1.50的玻璃上,镀上1.35的透明介质薄膜入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对1600nm的光波干涉相消,对2700nm的光波干涉相长且在600nm到700nm之间没有别的波长的光是最大限度相消或相长的情形求所镀介质膜的厚度(1nm=10-9m) 分析:上、下表面反射均为由光疏介质到光密介质,故不计附加光程差光程差为解:当光垂直入射时,i =0 对1(干涉相消): 对2(干涉相长): 由 解得: 将k、2、代入式得 7.78×10-4mm 15-12.当用波长为1的单色光垂直照射牛顿环装置时,测得中央暗斑外第1和第4暗环半径之差为,而用未知单色光垂直照射时,测得第1和第4暗环半径之差为,求未知单色光的波长2分析:用牛顿环暗环半径公式 ,计算。 解:根据题意可得 15-15.某种单色平行光垂直入射在单缝上,单缝宽a=0.15mm缝后放一个焦距f = 400 mm的凸透镜,在透镜的焦平面上,测得中央明条纹两侧第三级暗条纹之间的距离为8.0mm,求入射光的波长分析:由单缝衍射暗纹条件及暗纹到中心的距离可求波长。解:设第三级暗纹在j3方向上,则有 asinj3=3l 此暗纹到中心的距离为 x3=ftgj3因为j3很小,可认为tgj3sinj3,所以 x33f/a两侧第三级暗纹的距离是 2x3=6f/a=8.0mm =(2x3)a/6f =500nm 15-17.在复色光照射下的单缝衍射图样中,其中某一波长的第3级明纹位置恰与波长的单色光的第2级明纹位置重合,求这光波的波长分析:夫琅禾费衍射的明纹公式为,由题意的第三级明纹与波长的单色光的第二级明纹应有相同的衍射角。解:设未知波长为由单缝衍射明纹条件:可有:和可得15-18.一束平行光垂直入射到某个光栅上,该光束有两种波长的光,1=440 nm,2=660 nm(1nm=10-9m)实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角j=60°的方向上求此光栅的光栅常数d分析:光栅衍射主极大公式即光栅方程,两种波长的谱线重叠时,具有相同的衍射角。解:由光栅衍射主极大公式得 当两谱线重合时有j1=j2,即 两谱线第二次重合即是 , k1=6, k2=4由光栅公式可知dsin60°=61=3.05×10-3mm15-19.波长600nm的单色光垂直入射在一光栅上,第二级主极大在处,第四级缺级,试问:(1)光栅上相邻两缝的间距有多大?(2)光栅上狭缝可能的最小宽度有多大?(3)按上述选定的、值,试问在光屏上可能观察到的全部级数是多少?分析:(1)将已知条件代入光栅方程可求出光栅常数即光栅上相邻两缝的间距;(2)用缺级公式,可求出光栅上狭缝可能的最小宽度;(3)以为限先确定干涉条纹的级数,等于时对应的级次看不见,扣除缺级,最后算出条纹数。解:(1)由光栅方程 (k=2)得 (2)根据缺级条件,有取,得 (3)由光栅方程 令,解得: 即时出现主极大,缺级,级主极大在处,实际不可见,光屏上可观察到的全部主极大谱线数有15条.15-20.汽车的两盏前灯相距1.2m,试问汽车离人多远的地方,眼睛才可能分辩这两盏灯?假设夜间人眼瞳孔直径为5.0mm,车灯发光波长为.分析:两个物体能否分辨,取决于仪器的最小分辨角解:设为两灯距离,为人车之间距离,恰可分辨时,两车灯对瞳孔的最小分辨角为 由瑞利准则 得 15-20.汽车的两盏前灯相距1.2m,试问汽车离人多远的地方,眼睛才可能分辩这两盏灯?假设夜间人眼瞳孔直径为5.0mm,车灯发光波长为.分析:两个物体能否分辨,取决于仪器的最小分辨角解:设为两灯距离,为人车之间距离,恰可分辨时,两车灯对瞳孔的最小分辨角为