2021-2022学年山东省威海市乳山市重点达标名校中考一模数学试题含解析.doc
-
资源ID:83085364
资源大小:572.54KB
全文页数:17页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年山东省威海市乳山市重点达标名校中考一模数学试题含解析.doc
2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1要使分式有意义,则x的取值范围是( )Ax=Bx>Cx<Dx2实数a、b、c在数轴上的位置如图所示,则代数式|ca|a+b|的值等于()Ac+bBbcCc2a+bDc2ab3下列选项中,可以用来证明命题“若a2b2,则ab“是假命题的反例是()Aa2,b1Ba3,b2Ca0,b1Da2,b14已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )Ay=-x2-4x-1By=-x2-4x-2Cy=-x2+2x-1Dy=-x2+2x-25如图,在中,点D、E、F分别在边、上,且,下列四种说法: 四边形是平行四边形;如果,那么四边形是矩形;如果平分,那么四边形是菱形;如果且,那么四边形是菱形. 其中,正确的有( ) 个A1B2C3D46如图1,点F从菱形ABCD的顶点A出发,沿ADB以1cm/s的速度匀速运动到点B,图2是点F运动时,FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()AB2CD27一次函数与二次函数在同一平面直角坐标系中的图像可能是( )ABCD8如图,数轴上的A、B、C、D四点中,与数表示的点最接近的是( )A点AB点BC点CD点D9石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是( )A3.4×10-9mB0.34×10-9mC3.4×10-10mD3.4×10-11m10一组数据3、2、1、2、2的众数,中位数,方差分别是( )A2,1,0.4B2,2,0.4C3,1,2D2,1,0.2二、填空题(本大题共6个小题,每小题3分,共18分)11点A(a,3)与点B(4,b)关于原点对称,则a+b()A1B4C4D112分解因式:x2y2xy2+y3_13某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_14化简÷=_15如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上(1)AB的长等于_;(2)在ABC的内部有一点P,满足SPABSPBCSPCA =1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_16计算(a)3a2的结果等于_三、解答题(共8题,共72分)17(8分)如图,已知BD是ABC的角平分线,点E、F分别在边AB、BC上,EDBC,EFAC求证:BE=CF18(8分) 阅读我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”理解如图1,RtABC是“中边三角形”,C=90°,AC和BD是“对应边”,求tanA的值;探究如图2,已知菱形ABCD的边长为a,ABC=2,点P,Q从点A同时出发,以相同速度分别沿折线ABBC和ADDC向终点C运动,记点P经过的路程为s当=45°时,若APQ是“中边三角形”,试求的值19(8分)一次函数的图象经过点和点,求一次函数的解析式20(8分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期一二三四五每股涨跌(元)+21.4+0.91.8+0.5根据上表回答问题:(1)星期二收盘时,该股票每股多少元? (2)周内该股票收盘时的最高价,最低价分别是多少? (3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?21(8分)如图,AC是O的直径,点P在线段AC的延长线上,且PC=CO,点B在O上,且CAB=30°(1)求证:PB是O的切线;(2)若D为圆O上任一动点,O的半径为5cm时,当弧CD长为 时,四边形ADPB为菱形,当弧CD长为 时,四边形ADCB为矩形22(10分)如图所示,正方形网格中,ABC为格点三角形(即三角形的顶点都在格点上)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;把A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长23(12分)先化简后求值:已知:x=2,求的值24某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】本题主要考查分式有意义的条件:分母不能为0,即3x70,解得x【详解】3x70,x故选D【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义2、A【解析】根据数轴得到ba0c,根据有理数的加法法则,减法法则得到c-a0,a+b0,根据绝对值的性质化简计算【详解】由数轴可知,ba0c,c-a0,a+b0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键3、A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题由此即可解答.【详解】当a2,b1时,(2)212,但是21,a2,b1是假命题的反例故选A【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法4、D【解析】把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式【详解】解:y=x14x5=(x+1)11,顶点坐标是(1,1)由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x的图象上,即顶点的横纵坐标互为相反数左、右平移时,顶点的纵坐标不变,平移后的顶点坐标为(1,1),函数解析式是:y=(x1)11=x1+1x1,即:y=x1+1x1故选D【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变同时考查了二次函数的性质,正比例函数y=x的图象上点的坐标特征5、D【解析】先由两组对边分别平行的四边形为平行四边形,根据DECA,DFBA,得出AEDF为平行四边形,得出正确;当BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出正确;若AD平分BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得EAD=EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出正确;由AB=AC,ADBC,根据等腰三角形的三线合一可得AD平分BAC,同理可得四边形AEDF是菱形,正确,进而得到正确说法的个数【详解】解:DECA,DFBA,四边形AEDF是平行四边形,选项正确;若BAC=90°,平行四边形AEDF为矩形,选项正确;若AD平分BAC,EAD=FAD,又DECA,EDA=FAD,EAD=EDA,AE=DE,平行四边形AEDF为菱形,选项正确;若AB=AC,ADBC,AD平分BAC,同理可得平行四边形AEDF为菱形,选项正确,则其中正确的个数有4个故选D【点睛】此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键6、C【解析】通过分析图象,点F从点A到D用as,此时,FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a【详解】过点D作DEBC于点E.由图象可知,点F由点A到点D用时为as,FBC的面积为acm1.AD=a.DEADa.DE=1.当点F从D到B时,用s.BD=.RtDBE中,BE=,四边形ABCD是菱形,EC=a-1,DC=a,RtDEC中,a1=11+(a-1)1.解得a=.故选C【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系7、D【解析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a0,由直线可知,a0,a的取值矛盾,故本选项错误;C、由抛物线可知,a0,由直线可知,a0,a的取值矛盾,故本选项错误;D、由抛物线可知,a0,由直线可知,a0,且抛物线与直线与y轴的交点相同,故本选项正确故选D【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法8、B【解析】,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】, ,因为0.2680.7321.268,所以 表示的点与点B最接近,故选B.9、C【解析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示的形式,所以将111111111134用科学记数法表示,故选C考点:科学记数法10、B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数平均数为(3+2+1+2+2)÷5=2,方差为 (3-2)2+3×(2-2)2+(1-2)2=0.1,即中位数是2,众数是2,方差为0.1故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可【详解】点A(a,3)与点B(4,b)关于原点对称,a=4,b=3,a+b=1,故选D【点睛】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.12、y(xy)2【解析】原式提取公因式,再利用完全平方公式分解即可【详解】x2y2xy2+y3y(x2-2xy+y2)=y(x-y)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键13、4cm【解析】由题意知ODAB,交AB于点C,由垂径定理可得出BC的长,在RtOBC中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论【详解】由题意知ODAB,交AB于点E,AB=16cm,BC=AB=×16=8cm,在RtOBE中,OB=10cm,BC=8cm,OC=(cm),CD=OD-OC=10-6=4(cm)故答案为4cm【点睛】本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键14、x+1【解析】分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.详解:解:原式=÷ =(x+1)(x1)=x+1,故答案为x+1点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.15、; 答案见解析 【解析】(1)AB=故答案为(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G连接DN,EM,DG,DN与EM相交于点P,点P即为所求理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:1,PAB的面积=平行四边形ABME的面积,PBC的面积=平行四边形CDNB的面积,PAC的面积=PNG的面积=DGN的面积=平行四边形DEMG的面积,SPAB:SPBC:SPCA=1:2:116、a5【解析】根据幂的乘方和积的乘方运算法则计算即可.【详解】解:(-a)3a2=-a3a2=-a3+2=-a5.故答案为:-a5.【点睛】本题考查了幂的乘方和积的乘方运算.三、解答题(共8题,共72分)17、证明见解析【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题试题解析:EDBC,EFAC,四边形EFCD是平行四边形,DE=CF,BD平分ABC,EBD=DBC,DEBC,EDB=DBC,EBD=EDB,EB=ED,EB=CF考点:平行四边形的判定与性质18、tanA=;综上所述,当=45°时,若APQ是“中边三角形”,的值为或【解析】(1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得BC=x,可得tanA=(2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得AEFCEP,=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,=,=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,(3)作QNAP于N,可得tanAPQ=,tanAPE=,=,【详解】解:理解AC和BD是“对应边”,AC=BD,设AC=2x,则CD=x,BD=2x,C=90°,BC=x,tanA=;探究若=45°,当点P在AB上时,APQ是等腰直角三角形,不可能是“中边三角形”,如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,PC=QC,ACB=ACD,AC是QP的垂直平分线,AP=AQ,CAB=ACP,AEF=CEP,AEFCEP,=,PE=CE,=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,=,=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,如图3,作QNAP于N,MN=AN=PM=QM,QN=MN,ntanAPQ=,taAPE=,=,综上所述,当=45°时,若APQ是“中边三角形”,的值为或【点睛】本题是一道相 似形综合运用的试题, 考查了相 似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.19、y=2x+1【解析】直接把点A(1,1),B(1,5)代入一次函数y=kx+b(k0),求出k、b的值即可【详解】一次函数y=kx+b(k0)的图象经过点A(1,1)和点B(1,5),解得:故一次函数的解析式为y=2x+1【点睛】本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键20、(1)25.6元;(2)收盘最高价为27元/股,收盘最低价为24.7元/股;(3)-51元,亏损51元.【解析】试题分析: (1)根据有理数的加减法的运算方法,求出星期二收盘时,该股票每股多少元即可(2)这一周内该股票星期一的收盘价最高,星期四的收盘价最低(3)用本周五以收盘价将全部股票卖出后得到的钱数减去买入股票与卖出股票均需支付的交易费,判断出他的收益情况如何即可试题解析:(1)星期二收盘价为25+21.4=25.6(元/股)答:该股票每股25.6元. (2)收盘最高价为25+2=27(元/股)收盘最低价为25+21.45+0.91.8=24.7(元/股)答:收盘最高价为27元/股,收盘最低价为24.7元/股. (3)(25.2-25) ×1000-5×1000×(25.2+25)=200-251=-51(元)答:小王的本次收益为-51元.21、(1)证明见解析(2)cm,cm【解析】【分析】(1)连接OB,要证明PB是切线,只需证明OBPB即可;(2)利用菱形、矩形的性质,求出圆心角COD即可解决问题.【详解】(1)如图连接OB、BC,OA=OB,OAB=OBA=30°,COB=OAB=OBA=60°,OB=OC,OBC是等边三角形,BC=OC,PC=OA=OC,BC=CO=CP,PBO=90°,OBPB,PB是O的切线;(2)的长为cm时,四边形ADPB是菱形,四边形ADPB是菱形,ADB=ACB=60°,COD=2CAD=60°,的长=cm;当四边形ADCB是矩形时,易知COD=120°,的长=cm,故答案为:cm, cm.【点睛】本题考查了圆的综合题,涉及到切线的判定、矩形的性质、菱形的性质、弧长公式等知识,准确添加辅助线、灵活应用相关知识解决问题是关键.22、(1)(2)作图见解析;(3)【解析】(1)利用平移的性质画图,即对应点都移动相同的距离(2)利用旋转的性质画图,对应点都旋转相同的角度(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,A1B1C1即为所求(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,A1B2C2即为所求(3),点B所走的路径总长=考点:1网格问题;2作图(平移和旋转变换);3勾股定理;4弧长的计算23、 【解析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得【详解】解:原式=1(÷)=1=1=,当x=2时,原式=【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则24、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:,解得:x50,经检验,x50是原方程的解,且符合题意,x+21答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)设可购买m个乙种足球,则购买(50m)个甲种足球,根据题意得:50×(1+10%)(50m)+1×(110%)m2910,解得:m2答:这所学校最多可购买2个乙种足球【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系