欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2016年《南方新课堂高考总复习》数学(理科)第二章第14讲导数在函数中的应用ppt课件.ppt

    • 资源ID:83107400       资源大小:684KB        全文页数:33页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2016年《南方新课堂高考总复习》数学(理科)第二章第14讲导数在函数中的应用ppt课件.ppt

    在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么第14讲导数在函数中的应用在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么1了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)2了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么1函数的单调性函数 yf(x)在(a,b)内可导,则(1)若 f(x)0,则 f(x)在(a,b)内单调递增;(2)若 f(x)0,则 f(x)在(a,b)内_2函数的极值(1)判断 f(x0)是极值的方法:一般地,当函数 f(x)在点 x0 处连续时,单调递减在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么如果在 x0 附近的左侧 f(x)0,右侧 f(x)0,那么 f(x0)是极大值;如果在 x0 附近的左侧_,右侧_,那么 f(x0)是极小值f(x)0f(x)0(2)求可导函数极值的步骤:求 f(x);求方程 f(x)0 的根;检查 f(x)在方程 f(x)0 的根的左、右值的符号如果左正右负,那么 f(x)在这个根处取得极大值;如果左负右正,那么 f(x)在这个根处取得_;如果左右两侧符号一样,那么这个根不是极值点极小值在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么3函数的最值(1)函数 f(x)在a,b上有最值的条件:如果在区间a,b上,函数 yf(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值(2)若函数 f(x)在a,b上单调递增,则 f(a)为函数的最小值,f(b)为函数的最大值;若函数 f(x)在a,b上单调递减,则 f(a)为函数的最大值,f(b)为函数的最小值在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么(3)求 yf(x)在a,b上的最大(小)值的步骤:求函数 yf(x)在(a,b)内的极值;将函数 yf(x)的各_与端点值比较,其中最大的一个是最大值,最小的一个是最小值极值在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么1f(x)x33x22 在区间1,1上的最大值是()CA2B0C2D42(2013 年广州二模)已知e为自然对数的底数,函数 y)xex 的单调递增区间是(A1,)C1,)B(,1D(,1A在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么3(2013 年河南郑州模拟)函数 f(x)的定义域为开区间(a,b),导函数 f(x)在(a,b)内的图象如图 2-14-1,则函数 f(x)在(a,b)内的极大值点有()图 2-14-1A1 个B2 个C3 个D4 个4函数 f(x)x33x21 在 x_处取得极小值B2在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么考点 1 函数的单调性与极值(1)求 a 的值;(2)求函数 f(x)的单调区间与极值在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么解得 x1(舍)或 x5.当 x(0,5)时,f(x)0,函数 f(x)单调递增因此,函数 f(x)在 x5 时取得极小值,且极小值为 f(5)ln5.在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么【规律方法】(1)求函数的单调区间与函数的极值时要养成列表的习惯,可使问题直观且有条理,减少失分的可能.如果一个函数在给定定义域上的单调区间不止一个,这些区间之间一般不能用并集符号“”连接,只能用“,”或“和”字隔开.(2)“f(x)0或 f(x)0”是“函数 f(x)在某区间上为增函数(或减函数)”的充分不必要条件;“f(x0)0”是“函数 f(x)在 xx0 处取得极值”的必要不充分条件.在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么【互动探究】1函数 f(x)在 xx0 处的导数存在,若命题 p:f(x0)0,命题 q:xx0 是 f(x)的极值点,则 p 是 q 的()CA充分必要条件C必要不充分条件B充分不必要条件D既不充分也不必要条件解析:若 xx0 是 f(x)的极值点,则f(x0)0;若f(x0)0,而 xx0 不一定是 f(x)的极值点,如 f(x)x3,当 x0 时,f(0)0,但 x0 不是极值点故 p 是 q 的必要不充分条件故选 C.在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么考点 2 函数的最值(1)若 f(x)在 x2 处的切线与直线 3x2y10 平行,求f(x)的单调区间;(2)求 f(x)在区间1,e上的最小值在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么x(0,1)1(1,)f(x)0f(x)12令 f(x)0,得 x1.f(x)与 f(x)的情况如下表:所以f(x)的单调递减区间是(0,1),单调递增区间是(1,)在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么【规律方法】求函数的最值时,不可想当然地认为极值点就是最值点,要对函数 yf(x)的各极值与端点值进行比较,其中最大的一个是最大值,最小的一个是最小值.在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么【互动探究】在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么x252(2,)f(x)00在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么考点 3 利用导数解决函数中的恒成立问题(1)若 a3,试确定函数 f(x)的单调区间;(2)若 f(x)在其图象上任一点(x0,f(x0)处的切线斜率都小于2a2,求实数 a 的取值范围在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么由 f(x)0,解得 x3.所以函数 f(x)的单调递增区间为(1,3),单调递减区间为(,1)和(3,)(2)因为 f(x)x22xa,由题意,得 f(x)x22xa2a2 对任意 xR 恒成立,即x22x2a2a 对任意 xR 恒成立,设 g(x)x22x,所以 g(x)x22x(x1)21.所以当 x1 时,g(x)有最大值为 1.因为对任意 xR,x22x2a2a 恒成立,在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么【规律方法】若 f(x)在其图象上任一点处的切线斜率都小于2a2,即 f(x)x22xa2a2 对任意 xR 恒成立,分离变量得x22x0,实数 a,b 为常数)(1)若 a1,b1,求函数 f(x)的极值;(2)若 ab2,讨论函数 f(x)的单调性在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么

    注意事项

    本文(2016年《南方新课堂高考总复习》数学(理科)第二章第14讲导数在函数中的应用ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开