(完整word版)职高数学第一章集合习题集及答案.pdf
1.1 集合的概念习题练习 1.1.1 1、下列所给对象不能组成集合的是-()A正三角形的全体B。高一数学课本中的所有习题C所有无理数D。高一数学课本中所有难题2、下列所给对象能形成集合的是-()A高个子的学生B。方程 x-1 2=0 的实根C热爱学习的人D。大小接近于零的有理数3、:用符号“”和“”填空。(1)-11.8 N,0 R,-3 N,5 Z(2)2.1 Q,0.11 Z,-3.3 R,0.5 N(3)2.5 Z,0,-3 Q 0.5 N+答案:1、D 2、B 3、(1)(2)(3)练习 1.1.2 1、用列举法表示下列集合:(1)能被 3 整除且小于20 的所有自然数(2)方程x2-6x+8=0的解集2、用描述法表示下列各集合:(1)有所有是4 的倍数的整数组成的集合。(2)不等式 3x+71 的解集3、选用适当的方法表示出下列各集合:(1)由大于 11 的所有实数组成的集合;(2)方程(x-3)(x+7)=0 的解集;(3)平面直角坐标系中第一象限所有的点组成的集合;答案:1、(1)0,3,6,9,12,15,18;(2)2,4 2、(1)xx=4k,kZ;(2)x3x+713、(1)xx11;(2)-7,3;(3)(x,y)x0,y 01.2 集合之间的关系习题练习 1.2.1.1、用符号“”、“”、“”或“”填空:(1)3.14 Q(2)0(3)-2 偶数 (4)-1,0,1-1,1(5)xx2=7,xR2、设集合A=m,n,p,试写出A的所有子集,并指出其中的真子集3、设集合A=x x-10,集合 B=x-3 x7,指出集合A 与集合 B 之间的关系答案:1、2、所有的子集:,m,n,p,m,n,m,p,n,p,m,n,p;真子集:,m,n,p,m,n,m,p,n,p.3、AB 练习 1.2.2、1.2.3 1、用适当的符号填空:1,2,71,2,3,4,5,6,7,9;xx2=255,-5;-2 x|x|=2;2 Z;m a,m;0;-1,1 xx2-1=0.2、判断集合A=x(x+3)(3x-15)=0与集合 B=xx=-3 或 x=5 的关系3、判断集合A=2,8 与集合 B=xx2-10 x+16=0 的关系答案:1、=2、A=B 3、A=B 1.3 集合的运算习题练习 1.3.1.1、已知集合A,B,求 AB.(1)A=-3,2,B=0,2,3;(2)A=a,b,c,B=a,c,d,e,f,h;(3)A=-1,32,0.5,B=;(4)A=0,1,2,4,6,9,B=1,3,4,6,8 2、设 A=(x,y)x+y=2,B=(x,y)2x+3y=5,求ABI3、设 A=x x2,A=x-6 x5,求ABI答案:1、2,a,c,1,4,62、(1,1)3、x-6 x2 文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4练习 1.3.2.1、已知集合A,B,求 AB(1)A=-1,0,2,B=1,2,3;(2)A=a,B=c,e,f;(3)A=-11,3,6,15,B=;(4)A=-3,2,4,B=-3,1,2,3,4 2、集合 A=xx-3,B=x9x1,求 A B。3、设 M=x x3,N=x x6,求 M N。答案:1、-1,0,1,2,3,a,c,e,f,-11,3,6,15,-3,1,2,3,42、x x-3 3、R 练习 1.3.3.1、设 U 2,3,5,9,11,A 2,3 ,B 3,5,11 CU(AB).CUACUB .CU(AB).CUACUB 2、选择:设U=R,M x 3x8,那么 CUM等于()Axx3 或 x 8Bx x3 或 x 8Cxx3 且 x 8Dx x3 且 x 83、设 Ux-3 x 8,A=21xx,求UCA答案:1、2,5,9,11,2,5,9,11,9,92、B 3、x-3 x-1 或 2x81.4 充要条件习题练习 1.4 1、用“充分而不必要条件、必要而不充分条件、既不充分又不必要条件”和“充要条件”填空.(1)“同位角相等”是“两条直线平行”的_.(2)“a3=b3”是“a=b”的 _.(3)x=4是 x2-x-12=0 的_ 文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4(4)a=1 是 a=-1 的 _ 2、指出下列各组结论中p 与 q 的关系(1)p:x=y,q:x=y;(2)p:ab=0,q:0a(3)p:2xx+3,q:x 3答案:1、(1)充要条件(2)充要条件(3)充分而不必要条件(4)必要而不充分条件2、(1)p 是 q 的充分而不必要条件(2)p 是 q 的必要而不充分条件(3)p 是 q 的充要条件文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4文档编码:CB9H6F2Z1V4 HU6U8X1X5Y5 ZA1C3I1P4E4