高中数学1.2.1-2任意角的三角函数教案新人教A版必修3.pdf
-
资源ID:83164868
资源大小:6.64KB
全文页数:3页
- 资源格式: PDF
下载积分:12金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高中数学1.2.1-2任意角的三角函数教案新人教A版必修3.pdf
用心爱心专心1 1.2 任意角的三角函数教学目的:借助单位圆理解并掌握任意三角函数定义,利用三角函数线解决有关问题教学重点:任意角的正弦、余弦、正切的定义。教学难点:会应用三角函数线解决实际问题教学方法:启发式教具:多媒体教学过程:一问题提出1.设是一个任意角,它的终边与单位圆交于点P(x,y),角的三角函数是怎样定义的?2.三角函数在各象限的函数值符号分别如何?3 角是一个几何概念,同时角的大小也具有数量特征.我们从数的观点定义了三角函数,如果能从图形上找出三角函数的几何意义,就能实现数与形的完美统一.知识探究(一):正弦线和余弦线思考 1:如图,设角为第一象限角,其终边与单位圆的交点为P(x,y),则,都是正数,你能分别用一条线段表示角的正弦值和余弦值吗?思考 2:若角为第三象限角,其终边与单位圆的交点为P(x,y),则,都是负数,此时角的正弦值和余弦值分别用哪条线段表示?思考 3:为了简化上述表示,我们设想将线段的两个端点规定一个为始点,另一个为终点,使得线段具有方向性,带有正负值符号.根据实际需要,应如何规定线段的正方向和负方向?思考 4:规定了始点和终点,带有方向的线段,叫做有向线段.由上分析可知,当角为第一、三象限角时,sin、cos可分别用有向线段MP、OM 表示,即 MP=sin,OM=cos,那么当角为第二、四象限角时,你能检验这个表示正确吗?思考 5:设角的终边与单位圆的交点为P,过点 P作 x 轴的垂线,垂足为M,称有向线段MP,OM分别为角的正弦线和余弦线.当角的终边在坐标轴上时,角的正弦线和余弦线的含义如何?用心爱心专心2 思考 6:设为锐角,你能根据正弦线和余弦线说明sin cos1吗?知识探究(二):正切线思考 1:如图,设角为第一象限角,其终边与单位圆的交点为P(x,y),则是正数,用哪条有向线段表示角的正切值最合适?思考 2:若角为第四象限角,其终边与单位圆的交点为P(x,y),则是负数,此时用哪条有向线段表示角的正切值最合适?思考 3:若角为第二象限角,其终边与单位圆的交点为P(x,y),则是负数,此时用哪条有向线段表示角的正切值最合适?思考 4:若角为第三象限角,其终边与单位圆的交点为P(x,y),则是正数,此时用哪条有向线段表示角的正切值最合适?思考 5:根据上述分析,你能描述正切线的几何特征吗?思考 6:当角的终边在坐标轴上时,角的正切线的含义如何?当角的终边在x 轴上时,角的正切线是一个点;当角的终边在y 轴上时,角的正切线不存在.思考 7:观察下列不等式:你有什么一般猜想?思考 8:对于不等式(其中为锐角),你能用数形结合思想证明吗?用心爱心专心3 理论迁移例 1 作出下列各角的正弦线、余弦线、正切线:(1);(2);(3);(4).小结作业1.三角函数线是三角函数的一种几何表示,即用有向线段表示三角函数值,是今后进一步研究三角函数图象的有效工具.2.正弦线的始点随角的终边位置的变化而变化,余弦线和正切线的始点都是定点,分别是原点O和点 A(1,0).3.利用三角函数线处理三角不等式问题,是一种重要的方法和技巧,也是一种数形结合的数学思想.作业:P17 练习:1,2.P21 习题 1.2A 组:5,7.板书设计 1.2 任意角的三角函数1 知识探究(一):正弦线和余弦线例 1 2 知识探究(二):正切线例 2