(压轴题)小学数学六年级下册第五单元数学广角(鸽巢问题)测试题(有答案解析)(4).pdf
-
资源ID:83192758
资源大小:54.13KB
全文页数:8页
- 资源格式: PDF
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
(压轴题)小学数学六年级下册第五单元数学广角(鸽巢问题)测试题(有答案解析)(4).pdf
(压轴题)小学数学六年级下册第五单元数学广角(鸽巢问题)测试题(有答案解析)(4)一、选择题1下面说法错误的是()。若 a 比 b 多 20%,则 6a=5b;100 以内(含 100)的所有偶数的和比奇数的和多1;有一个角是60 的等腰三角形一定是正三角形;10 只鸟要飞回4 个窝里,至少有4 只鸟飞进同一个窝。A.B.C.D.2某小学有6 个年级,每个年级有8 个班。一天放学,8 位小朋友一起走出校门。那么,下列说法中,正确的是()。A.他们中至少有2 人出生月份相同 B.他们中至少有2 人是同一年级的C.他们中至少有2 人生肖属相相同 D.他们中至少有2 人是同一班级的3把 25 枚棋子放入下图的三角形内,那么一定有一个小三角形中至少放入()枚。A.9 B.8 C.7 D.64下列陈述中,错误的是()。A.直径是圆内最长的线段B.31 名生日在7 月的学生中一定有2 人的生日是同一天C.同一钟表上时针与分针的速度比是1:12D.某三角形中最小的一个角是50,那么它一定是锐角三角形5一个袋子里有红、白、蓝三种颜色的球各10 个,至少拿出()个,才能保证有3 个球的颜色相同。A.7 B.4 C.216袋中有60 粒大小相同的弹珠,每15 粒是同一种颜色,为保证取出的弹珠中一定有2粒是同色的,至少要取出()粒才行。A.4 B.5 C.6 D.771000 只鸽子飞进50 个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少有()只鸽子。A.20 B.21 C.22 D.238把 17 个乒乓球装进4 个袋子里,总有一个袋子至少要装()A.3 B.4 C.5 D.69在一个不透明的袋子中装有红、黄两种颜色的球各4 个,至少要摸出()个球才能保证摸到两个同颜色的球A.2 B.3 C.4 D.5105 只小鸟飞进两个笼子,至少有()只小鸟在同一个笼子里A.1 B.2 C.311清平中心小学98 班有 52 人,彭老师至少要拿()作业本随意发给学生,才能保证至少有有个学生拿到2 本或 2 本以上的本子A.53 本B.52本C.104本12袋子中有红、黄、蓝球各4 个,至少任意拿出()个球,才能保证某种颜色的球有 2 个A.3 B.4 C.5 D.7二、填空题1313 本书放进3 个抽屉,不管怎么放,总有一个抽屉至少放进_本书14某小区 2019 年共新增加了13 辆电动清洁能源小客车,一定有_辆或 _辆以上的小客车是在同一个月内购买的。15“走美”主试委员会为三八年级准备决赛试题每个年级道题,并且至少有道题与其他各年级都不同如果每道题出现在不同年级,最多只能出现次本届活动至少要准备 _道决赛试题16(第六届小数报数学竞赛初赛)有形状、长短都完全一样的红筷子、黑筷子、白筷子、黄筷子、紫筷子和花筷子各25 根。在黑暗中至少应摸出_根筷子,才能保证摸出的筷子至少有8 双(每两根花筷子或两根同色的筷子为一双)。17 盒子里装有同样大小的红球和黄球各5 个,要想摸出的球一定有2 个同色的,至少要摸出 _个球。18有 4 双不同花色的手套,至少要拿出_只,才能保证有两只手套是一双。19从 7 个抽屉中拿出22 个苹果,无论怎样拿,总有一个抽屉中至少拿出了_个苹果。20把 5 个梨放在4 个盘子里,总有_个盘子至少要放2 个梨。三、解答题21一个班有40 名学生,现在有课外书125 本。把这些书分给这个班的学生,是否定有人会得到 4 本或 4 本以上的课外书?22要把61 个乒乓球分装在若干个乒乓球盒中,每个盒子最多可以装5 个乒乓球,问:至少有多少个盒子中的乒乓球数目相同?23试说明在一条长100 米的小路一旁植树101 棵,不管怎样种,总有两棵树的距离不超过 1 米24 如图、四只小盘拼成一个环形,每只小盘中放若干糖果.每次可取出1只、或 3 只、或 4 只盘中的全部糖果,也可取出2 只相邻盘中的全部糖果.这样取出的糖果数最多有几种?请说明理由.25班上有名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?26 某次选拔考试,共有1123 名同学参加,小明说:“至少有10 名同学来自同一个学校”如果他的说法是正确的,那么最多有多少个学校参加了这次入学考试?【参考答案】*试卷处理标记,请不要删除一、选择题1A 解析:A 【解析】【解答】解:若 a 比 b 多 20%,则 a=b(1+20%)=1.2b,那么 5a=6b;100 以内(含100)的所有偶数的和比奇数的和多50;有一个角是60 的等腰三角形,剩下的两个角也是60,所以一定是正三角形;10 4=22,2+1=3,10 只鸟要飞回4 个窝里,至少有3 只鸟飞进同一个窝。综上,的说法是错误的。故答案为:A。【分析】一个数比另一个数多百分之几,那么这个数=另一个数 (1+百分之几);100-99+98-97+96-95+2-1=(100-99)+(98-97)+(96-95)+(2-1)=50 1=50,所以 100 以内(含100)的所有偶数的和比奇数的和多50;等腰三角形的两个底角相等,若顶角是60,那么其中一个底角是(180-60)2=60,那么这是一个等边三角形;若底角是60,那么顶角是180-60 2=60,那么这是一个等边三角形;10 只鸟要飞回4 个窝里,考虑在最不利的情况,把每个窝放入最多的鸟,即用10 除以4,那么飞进同一个窝里的鸟的只数就是将计算得出的商加1 即可。2B 解析:B 【解析】【解答】86=1(年级).2(人);1+1=2(人)。故答案为:B。【分析】8 位小朋友6 个年级,考虑最不利原则,6 个小朋友每人一个年级,余下的2 个小朋友,不管是哪个年级的,他们中至少有2 人是同一年级的。3C 解析:C 【解析】【解答】254=6(个).1(个);6+1=7(个);一定有一个小三角形中至少放入7 枚。故答案为:C。【分析】把4 个小三角形看作4 个抽屉,每个抽屉需要放6 枚,剩下的1 枚不论怎么放,总有一个抽屉里至少有7 枚,所以,有一个小三角形内至少有7 枚棋子,据此解答。4B 解析:B 【解析】【解答】选项A,直径是圆内最长的线段,此题说法正确;选项 B,31 31=1(人),31 名生日在7 月的学生中不一定有2 人的生日在同一天,原题说法错误;选项 C,同一钟表上时针与分针的速度比是1:12,此题说法正确;选项D,因为180-50=130,最小的一个角是50,那么它一定是锐角三角形,此题说法正确;故答案为:B。【分析】在同一个圆里,直径是圆内最长的线段;7 月份有 31 天,31 个人,如果每天有1 个人出生,则31 天有 31 个人出生,所以31 名生日在 7 月的学生中不一定有2 人的生日在同一天;在相同的时间内,时针走了1 个大格,而分针走了12 个大格,所以它们的速度比是1:12;三角形的内角和是180,当三角形中最小的一个角是50 时,则剩下的两个角也是锐角,这个三角形一定是锐角三角形。5A 解析:A 【解析】【解答】32+1=7(个)故答案为:A【分析】由题意可知,按最坏的结果来看,拿出6 个球中有2 个红球、2 个白球、2 个蓝球,如果再拿出一个球,无论什么颜色,都能保证有3 个球颜色相同。6B 解析:B 【解析】【解答】解:6015=4(种),4+1=5(粒)故答案为:B【分析】用60 除以 15 求出一共有4 种颜色,如果4 种颜色各取出1 粒,那么再取出1 粒无论是什么颜色都能保证有2 粒颜色相同,所以至少取出5 粒才行.7A 解析:A 【解析】【解答】解:100050=20(只)故答案为:A【分析】100050=20,从极端的情况考虑,假如每个巢里面的鸽子数都相等,都是20只,所以一定能找到一个含鸽子最多的巢,它里面至少有20 只鸽子.8C 解析:C 【解析】【解答】解:174=4个1个,4+1=5(个)即总有一个袋子至少要装5 个故选:C【分析】把17 个乒乓球装进4 个袋子里,将这4 个袋子当做4 个抽屉,174=4个1个,即平均每个袋子里装4 个后,还余下一个根据抽屉原理可知,总有一个袋子至少要装4+1=5 个9B 解析:B 【解析】【解答】解:2+1=3(个);答:至少要摸出3 个球才能保证摸到两个同颜色的球;故选:B【分析】从最极端情况分析,假设前2 个都摸出红、黄各一个球,再摸1 个只能是两种颜色中的一个,进而得出结论10C 解析:C 【解析】【解答】解:52=2(只)1只,2+1=3(只)答,至少有3 只小鸟在同一个笼子里故选:C【分析】5 只小鸟飞进两个笼子,52=2(只)1 只,即当每个笼子里平均飞进两只时,还有一只在笼外,根据抽屉原理可知,至少有2+1=3 只小鸟在同一个笼子里11A 解析:A 【解析】【解答】解:根据题干分析可得:52+1=53(本),答:至少要拿53 本作业本故选:A【分析】把52 个同学看做52 个抽屉,要保证至少有1 个学生拿到2 本或 2 本以上的本子,则作业本的数量应该是比学生数多1,即 52+1=53 本,据此即可解答12B 解析:B 【解析】【解答】解:根据分析可得,3+1=4(个);答:至少任意拿出4 个球,才能保证某种颜色的球有2 个;故选:B【分析】把3 种不同颜色看作3 个抽屉,从最不利情况考虑,每个抽屉先放1 个球,共需要 3 个,再取出1 个不论是什么颜色,总有一个抽屉里的球和它同色,所以至少要取出:3+1=4(个),据此解答二、填空题13【解析】【解答】解:133 4(本)1(本)4+15(本)故答案为:5【分析】从最坏的情况考虑假如每个抽屉各放4 本数则剩下的1 本无论放在哪个抽屉里总有一个抽屉至少放进5 本书解析:【解析】【解答】解:133 4(本)1(本),4+1 5(本)。故答案为:5。【分析】从最坏的情况考虑,假如每个抽屉各放4 本数,则剩下的1 本无论放在哪个抽屉里,总有一个抽屉至少放进5 本书。142;2【解析】【解答】1312=11(辆)1(辆);1+1=2(辆)故答案为:2;2【分析】假设一个月买一辆一年买了12 辆还余下一辆不管这一辆是哪个月购买的一年一定有2 辆或 2 辆以上的小客车是在解析:2;2 【解析】【解答】1312=11(辆)1(辆);1+1=2(辆)。故答案为:2;2.【分析】假设一个月买一辆,一年买了12 辆还余下一辆,不管这一辆是哪个月购买的,一年一定有2 辆或 2 辆以上的小客车是在同一个月内购买的。15【解析】【解答】解:每个年级都有自己8 道题目然后可以三至五年级共用 4 道题目六到八年级共用4 道题目总共有 86+42=56(道)题目故答案为:56【分析】因为要求至少要准备试题的道数那么每个年级都有解析:【解析】【解答】解:每个年级都有自己8 道题目,然后可以三至五年级共用4 道题目,六到八年级共用4 道题目,总共有86+42=56(道)题目。故答案为:56。【分析】因为要求至少要准备试题的道数,那么每个年级都有自己8 道题目,然后根据年级分段讨论共用题目的道数,据此作答即可。16【解析】【解答】解:因为筷子只有6 种所以 7 根中必有一双颜色相同我们取出其中一双这样剩下5 根筷子为了再能取一双颜色相同的筷子根据最不利原则需再加两只筷子才能保证再摸出一双颜色相同的筷子以此类推所以要8 解析:【解析】【解答】解:因为筷子只有6 种,所以7 根中必有一双颜色相同。我们取出其中一双,这样剩下5 根筷子,为了再能取一双颜色相同的筷子,根据最不利原则,需再加两只筷子才能保证再摸出一双颜色相同的筷子,以此类推,所以要8 双颜色相同的筷子需 7+2(8-1)=21 根筷子。故答案为:21。【分析】因为有六种颜色,那么7 根中必有一双颜色相同,将其中的一双取出后,还剩下5 双,然后再取2 根又得到一双筷子,据此作答即可。17【解析】【解答】解:2+1=3 故答案为:3【分析】从最坏的情况考虑如果前两个球一个红色一个黄色那么再摸出一个无论是什么颜色都能保证一定有2个同色的解析:【解析】【解答】解:2+1=3故答案为:3。【分析】从最坏的情况考虑,如果前两个球一个红色一个黄色,那么再摸出一个无论是什么颜色都能保证一定有2 个同色的。18【解析】【解答】4+1=5(只)故答案为:5【分析】此题主要考查了抽屉原理的应用因为有4 双不同花色的手套假设只拿4 只可能每种花色各拿一只那么再多拿一只一定会出现同色的所以至少拿出4+1=5只就能保证解析:【解析】【解答】4+1=5(只).故答案为:5.【分析】此题主要考查了抽屉原理的应用,因为有4 双不同花色的手套,假设只拿4 只,可能每种花色各拿一只,那么再多拿一只,一定会出现同色的,所以至少拿出4+1=5 只,就能保证有两只手套是一双,据此解答.19【解析】【解答】227=3(个)1(个)至少:3+1=4(个)故答案为:4【分析】抽屉原理的公式:a 个物体放入 n 个抽屉如果 an=bc那么有一个抽屉至少放(b+1)个物体据此解答解析:【解析】【解答】227=3(个)1(个),至少:3+1=4(个).故答案为:4.【分析】抽屉原理的公式:a 个物体放入n 个抽屉,如果an=bc,那么有一个抽屉至少放(b+1)个物体,据此解答.20【解析】【解答】解:54=11 所以总有 1 个盘子至少放2 个梨故答案为:1【分析】假如每个盘子里都放1 个梨那么余下的 1 个梨无论放在哪个盘子里都能保证有 1 个盘子放 2 个梨解析:【解析】【解答】解:54=11,所以总有1 个盘子至少放2 个梨.故答案为:1【分析】假如每个盘子里都放1 个梨,那么余下的1 个梨无论放在哪个盘子里,都能保证有1 个盘子放 2 个梨.三、解答题21 解:把 40 名学生看做40 个抽屉,125 本看做 125 个元素,利用抽屉原理最差情况:要使每个抽屉的数量最少,只要使每个抽屉的元素数尽量平均,12540=3(本)5(本)3+1=4(本)答:把这些书分给这个班的学生,一定有人会得到4 本或 4 本以上的课外书。【解析】【分析】考虑最不利原则,这40 个学生每人分3 本,还余下5 本,这5 本不管怎么分,都能保证有人会得到4 本或 4 本以上的课外书。22 解:每个盒子不超过5 个球,最“坏”的情况是每个盒子的球数尽量不相同,为1、2、3、4、5 这 5 种各不相同的个数,共有:,最不利的分法是:装1、2、3、4、5 个球的各4 个,还剩1 个球,要使每个盒子不超过5个球,无论放入哪个盒子,都会使至少有5 个盒子的球数相同【解析】【分析】每个盒子不超过5 个球,那么盒子里可以放1、2、3、4、5,一种五种球,这些球一共有15 个,然后用球的总个数除以15,如果有余数,那么球数相同的盒数至少有的个数就是将所得的商加1 即可;如果没有余数,那么球数相同至少有的个数就是所得的商。23 解:把这条小路分成每段1 米长,共100 段每段看作是一个抽屉,共100 个抽屉,把101 棵树看作是101 个苹果,于是101 个苹果放入100 个抽屉中,至少有一个抽屉中有两个苹果,即至少有一段有两棵或两棵以上的树.【解析】【分析】当这条100 米长的路等距离种100 棵树时,每段是1 米,那么种101 棵树,总有两棵树的距离不超过1 米。24 解:最多为种。因为取只盘子有种取法;取只盘子(即有1 种盘子不取),也有四种取法;取4 只盘子只有1 只取法;取两只相邻的盘子,在第1 只取定后,(依顺时针方向),第2 只也就确定了,所以也有4 种取法.共有种取法.满足 13 种取法的糖果放法可以有无数多种.例题的解表明糖果数可以为113 这 13 种.【解析】【分析】分别计算出取1 只盘子、2 只盘子、3 只盘子、4 只盘子的取法,然后加起即可。25 解:把 50 名小朋友当作 50 个“抽屉”,书作为物品把书放在 50 个抽屉中,要想保证至少有一个抽屉中有两本书,根据抽屉原理,书的数目必须大于50,而大于50 的最小整数为 50+1=51,所以至少要拿51 本书。【解析】【分析】考虑最不利的情况:有一个小朋友能得到两本书,那么在小朋友人数的基础上加 1 即可。26 解:本题需要求抽屉的数量,反用抽屉原理和最“坏”情况的结合,最坏的情况是只有10个 同 学 来 自 同 一 个 学 校,而 其 他 学 校 都 只 有9名 同 学 参 加,则(1123-10)9=1236,因此最多有:123+1=124 个学校。【解析】【分析】考虑最不利的情况:只有10 个同学来自同一个学校,而其他学校都只有9 名同学参加,那么可以先从1123 名学生中减去10 人,然后再除以9,若有余数,则商加 1 可得出答案;若没有余数,则求得的商即为答案。