八年级数学下册2.5.2矩形的判定学案(无答案)(新版)湘教版.docx
-
资源ID:83270404
资源大小:16.66KB
全文页数:3页
- 资源格式: DOCX
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
八年级数学下册2.5.2矩形的判定学案(无答案)(新版)湘教版.docx
矩形判定学习目标:1理解并掌握矩形判定方法2使学生能应用矩形定义、判定等知识,解决简单证明题和计算题,进一步培养学生分析能力.重点、难点1重点:矩形判定2难点:矩形判定及性质综合应用【课前预习】1知识准备1矩形概念:2矩形性质:边:角:对角线:3矩形与平行四边形之间关系?2探究:一位很有名望木工师傅,招收了两名徒弟。一天,师傅有事外出,两徒弟就自已在家练习用两块四边形废料各做了一扇矩形式门,完事之后,两人都说对方门不是矩形,而自已是矩形。甲理由是:“我用直尺量这个门两条对角线,发现它们长度相等,所以我这个四边形门就是矩形。乙理由是:“我用角尺量我门任意三个角,发现它们都是直角。所以我这个四边形门就是矩形。根据它们对话,你能肯定谁门一定是矩形。通过讨论得到矩形判定方法矩形判定方法1: 矩形判定方法2: 3判定方法证明判定1:在ABCD中,AC=BD求证:四边形ABCD是矩形几何语言:如图 ,在ABC中,ACB90°, CD为中线,延长CD到点E,使得 DECD连结AE,BE,那么四边形ACBE为矩形推论: 四边形是矩形。判定2:A=B=C=90°求证:四边形ABCD是矩形证明:几何语言:4概括矩形判定方法:定义: 判定1: 判定2: 【课堂活动】例1以下各句判定矩形说法正确是 1对角线相等四边形是矩形 2对角线互相平分且相等四边形是矩形3四个角都相等四边形是矩形 4有三个角都相等四边形是矩形5有三个角是直角四边形是矩形6一组对角互补平行四边形是矩形;例2:ABCD对角线AC、BD相交于点O,AOB是等边三角形,AB=4m,求这个平行四边形面积变式:在ABCD中,对角线,相交于点,且OBC=OCB.求证:四边形ABCD是矩形例3:如图1,ABCD四个内角平分线分别相交于点E,F,G,H求证:四边形EFGH是矩形(多种方法)【能力提升】1以下说法正确是 A有一组对角是直角四边形一定是矩形B有一组邻角是直角四边形一定是矩形C对角线互相平分四边形是矩形 D对角互补平行四边形是矩形2.如图,E,F,G,H分别是四边形ABCD四条边中点,要使四边形EFGH为矩形,四边形ABCD应具备条件是 A一组对边平行而另一组对边不平行 B对角线相等 C对角线互相垂直 D对角线互相平分 3如图,在四边形ABCD中,ADBC,D=90°,假设再添加一个条件,就能推出四边形ABCD是矩形,你所添加条件是 4:如图,在ABCD中,以AC为斜边作RtACE,且BED为直角求证:四边形ABCD是矩形