材料力学复习总结-很全面的材料力学期末考试复习资料课件.ppt
-
资源ID:83280919
资源大小:3.23MB
全文页数:100页
- 资源格式: PPT
下载积分:12金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
材料力学复习总结-很全面的材料力学期末考试复习资料课件.ppt
第一部分第一部分杆件的强度与刚度杆件的强度与刚度下面框图表示了求解过程:下面框图表示了求解过程:杆件的强度与刚度杆件的强度与刚度包括了基本变形与组合变形包括了基本变形与组合变形一、杆件的内力一、杆件的内力 1.内力的概念内力的概念 2.内力的计算方法内力的计算方法 3.内力图作法内力图作法 内力内力 截面法截面法 一、内力一、内力 物体受外力作用,物体内各部分之间因相对位置的物体受外力作用,物体内各部分之间因相对位置的变化而引起的相互作用变化而引起的相互作用.必须必须注意:注意:1 1 内力不是物体内各质点间相互作用力内力不是物体内各质点间相互作用力.2 2 内力是由外力引起的物体内部各部分之间附加相互内力是由外力引起的物体内部各部分之间附加相互作用力,即作用力,即 附加内力附加内力.3 3 作用在截面上的内力是一连续的分布力系作用在截面上的内力是一连续的分布力系.应用截面法应用截面法符号规定:拉伸为正,压缩为负符号规定:拉伸为正,压缩为负.轴向拉伸轴向拉伸一个内力参数:轴一个内力参数:轴 力力PPPFNPFNFN =PFN =P 扭转变形一个内力参数:一个内力参数:扭扭 矩矩mmmTmT扭矩扭矩T T的符号规定的符号规定:nnmTmT1、求支反力、求支反力2、1-1面上的内力面上的内力11FsFsFs=RA=P bl剪力符号规定:剪力符号规定:弯矩符号规定:弯矩符号规定:左上右下为正左上右下为正下侧受拉下侧受拉(上凹下凸、左顺右逆上凹下凸、左顺右逆)为正为正或使该段梁顺或使该段梁顺时针转动为正时针转动为正MMMMFsFsFsFs2 2、扭矩及扭矩图、扭矩及扭矩图 1.横截面上的内力:横截面上的内力:扭矩扭矩(MT)2.扭矩图扭矩图:与轴力图作法完全相同:与轴力图作法完全相同(纵坐标改为扭矩大小纵坐标改为扭矩大小)。例二例二 计算例一中所示轴的扭矩,并作扭矩图。计算例一中所示轴的扭矩,并作扭矩图。MAMBMCBCADMD解:已知解:已知477.5Nm955Nm637NmMT+-作扭矩图如左图示。作扭矩图如左图示。FsM例例2 图示简支梁受均布荷载图示简支梁受均布荷载Fs的作用,作该梁的剪的作用,作该梁的剪力图和弯矩图。力图和弯矩图。FslAB解:解:1、求支反力、求支反力FAFB2、建立剪力方程和弯矩方程、建立剪力方程和弯矩方程 例例3 在在图图示示简简支支梁梁AB的的C点点处处作作用用一一集集中中力力F,作作该梁的剪力图和弯矩图。该梁的剪力图和弯矩图。由由剪剪力力、弯弯矩矩图图知知:在在集集中中力力作作用用点点,弯弯矩矩图图发发生生转转折折,剪剪力力图图发发生生突突变变,其其突突变变值值等等于于集集中中力力的的大大小小,从从左左向向右右作作图图,突突变方向沿集中力作用的方向变方向沿集中力作用的方向。FabClAB解:解:1、求支反力、求支反力2、建立剪力方程和弯矩方程、建立剪力方程和弯矩方程FAFBFsMxFsFFlMFlABabClABMFAFBFsMFabClABFAFBFsMFsMFslABFAFB载荷集度、剪力和弯矩的微分关系载荷集度、剪力和弯矩的微分关系:d)d()Fs(xxqx=d()d)MxxFs(x=d()dd)d()22MxxFs(xxqx=剪力图和弯矩图是内力图的难点和重点剪力图和弯矩图是内力图的难点和重点杆件的应力与强度杆件的应力与强度 1.应力的概念应力的概念 2.应力的计算方法应力的计算方法 3.强度条件强度条件FF1122假设:假设:平面假设平面假设 横截面上各横截面上各点处仅存在正应点处仅存在正应力并沿截面均匀力并沿截面均匀分布分布。拉应力拉应力为为正正,压应力压应力为为负负。对于等直杆对于等直杆 当有多段轴力时,最大轴力所对应的当有多段轴力时,最大轴力所对应的截面截面-危险截面。危险截面。危险截面上的正应力危险截面上的正应力-最大工作应力最大工作应力FF一、轴向拉压杆横截面上的应力一、轴向拉压杆横截面上的应力根据强度条件可进行强度计算:根据强度条件可进行强度计算:强度校核强度校核 (判断构件是否破坏判断构件是否破坏)设计截面设计截面(构件截面多大时,才不会破坏构件截面多大时,才不会破坏)求许可载荷求许可载荷(构件最大承载能力构件最大承载能力)-许用应力许用应力u-极限应力极限应力FN-安全因数安全因数强度条件强度条件拉(压)杆的强度条件拉(压)杆的强度条件二、圆轴横截面应力与强度二、圆轴横截面应力与强度1)横截面上任意点:横截面上任意点:2)横截面边缘点:横截面边缘点:其中:其中:d/2OT抗扭截面系数抗扭截面系数D/2OTd/2空心圆空心圆空心圆空心圆实心圆实心圆实心圆实心圆 强度条件强度条件强度条件强度条件:,许用切应力许用切应力;根据强度条件可进行:根据强度条件可进行:强度校核强度校核;选择截面选择截面;计算许可荷载。计算许可荷载。当中性轴是横截面的对称轴时:当中性轴是横截面的对称轴时:三、(三、(1)梁的弯曲正应力及强度条件)梁的弯曲正应力及强度条件WWz z:抗弯截面系数(模量)抗弯截面系数(模量)梁的正应力梁的正应力强度条件强度条件强度条件:强度条件:等直梁等直梁强度条件强度条件强度条件强度条件 对于铸铁等脆性材料,抗拉和抗压能力不同,所以有许用对于铸铁等脆性材料,抗拉和抗压能力不同,所以有许用弯曲拉应力和许用弯曲压应力两个数值。弯曲拉应力和许用弯曲压应力两个数值。强度条件为:强度条件为:强度条件为:强度条件为:请注意:请注意:梁的最大工作拉应梁的最大工作拉应力和最大工作压应力有时并不力和最大工作压应力有时并不发生在同一截面上。发生在同一截面上。三三.(2 2)梁的弯曲)梁的弯曲切应力强度条件切应力强度条件等直梁等直梁:注意:梁的弯曲切应力强度条件:梁的弯曲切应力强度条件:截面直梁变截面梁 强度计算:强度校核、确定许可载荷、设计截面尺寸。在以下几种特殊情形下,应校核梁的切应力:在以下几种特殊情形下,应校核梁的切应力:1)1)梁的最大弯矩较小,而最大剪力却很大时。梁的最大弯矩较小,而最大剪力却很大时。2)2)在焊接或铆接的组合截面钢梁中,当其横截面腹在焊接或铆接的组合截面钢梁中,当其横截面腹板部分的宽度与梁高之比小于型钢截面的相应比值时。板部分的宽度与梁高之比小于型钢截面的相应比值时。3)3)木梁,木材在其顺纹方向的抗剪强度较差,在横木梁,木材在其顺纹方向的抗剪强度较差,在横力弯曲时可能因中性层上的切应力过大而使梁沿中性力弯曲时可能因中性层上的切应力过大而使梁沿中性层发生剪切破坏。层发生剪切破坏。四、剪切和挤压的实用计算四、剪切和挤压的实用计算剪力剪力 Fs =P 式中,Fs 为受剪面上的剪力为受剪面的面积。假设受剪面上各点的切应力相假设受剪面上各点的切应力相等,则受剪面上的等,则受剪面上的名义为切应力名义为切应力名义为切应力名义为切应力为为PPmmmmP(b)Fs剪切面剪切面铆钉剪切应力铆钉剪切应力1、剪切、剪切剪切的强度剪切的强度条件为条件为PPmmmmP(b)Fs剪切面剪切面 为材料的许用切应力。且极限切应力安全系数 螺栓与钢板相互接触的侧面上,发螺栓与钢板相互接触的侧面上,发生的彼此间的局部承压现象,称为挤生的彼此间的局部承压现象,称为挤压。压。2 2、挤压、挤压 在接触面上的压力,称为挤压力,并记为 Pbs 。PPPP挤压面受剪面挤压破坏的两种形式(1)螺栓压扁(2)钢板在孔缘压皱在挤压实用计算中,假设名义挤压应力的计算式为为计算挤压面的面积为接触面上的挤压力dh挤压现象的实际受力如图 c 所示。图图 c 1 1、当接触面为圆柱面时、当接触面为圆柱面时,计算挤压面积计算挤压面积 A Abs bs 为实际接为实际接触面在直径平面上的投影面触面在直径平面上的投影面积积 实际接触面直径投影面铆钉挤压铆钉挤压 2 2、当连接件与被连接的接触面为平面时、当连接件与被连接的接触面为平面时,计算挤压计算挤压面面积面面积A Abs bs 就是实际接触面的面积,如图就是实际接触面的面积,如图b b所示。所示。杆原长为杆原长为l,直径为,直径为d。受一对轴向拉力。受一对轴向拉力F的作用,发生的作用,发生变形。变形后杆长为变形。变形后杆长为l1,直径为,直径为d1。其中:其中:拉应变拉应变为正,为正,压应变压应变为负。为负。1、纵向应变、纵向应变:3.研究一点的线应变:研究一点的线应变:取单元体积为取单元体积为xyz该点沿该点沿x轴方向的线应变为:轴方向的线应变为:x方向原长为方向原长为x,变形变形后其长度改变量为后其长度改变量为x一、轴向拉(压)杆的变形一、轴向拉(压)杆的变形 胡克定律胡克定律2.横向应变横向应变:纵向和横向应变纵向和横向应变若为矩形截面,边长分别若为矩形截面,边长分别h与与b则横向应变则横向应变:横向横向应变与纵向应变之比为一常数应变与纵向应变之比为一常数-称为称为泊松比泊松比胡克定律胡克定律 其中:其中:E-弹性模量,单位为弹性模量,单位为Pa;EA-杆的抗拉(压)刚度。杆的抗拉(压)刚度。胡克定律的另一形式:胡克定律的另一形式:4.4.横向应变与纵向应变的关系横向应变与纵向应变的关系计算目的计算目的:刚度计算、为解超静定问题作准备。:刚度计算、为解超静定问题作准备。相对扭转角相对扭转角:GIp抗扭刚度抗扭刚度,表示杆抵抗扭转变形能力的强弱表示杆抵抗扭转变形能力的强弱。刚度条件刚度条件 其中:其中:,许用扭转角,许用扭转角,取值可根据有关设计标淮或规范取值可根据有关设计标淮或规范确定。确定。二、圆轴扭转时的变形二、圆轴扭转时的变形 刚度条件刚度条件单位长度的扭转角单位长度的扭转角:radrad/md 一、单位长度相对扭转角 相对扭转角 比较拉压变形比较拉压变形:公式适用条件:公式适用条件:1、当、当p(剪切比例极限)公式才成立(剪切比例极限)公式才成立2、仅适用于圆杆(平面假设对圆杆才成立)、仅适用于圆杆(平面假设对圆杆才成立)4、对于小锥度圆杆(截面缓慢变化)可作近似计算、对于小锥度圆杆(截面缓慢变化)可作近似计算3、扭矩、面积沿杆轴线不变化(、扭矩、面积沿杆轴线不变化(T、Ip为常量)为常量)称为抗扭刚度称为抗扭刚度 若圆轴的(T/GIP)分段为常数,其两端面间的相对扭转角为 除满足强度条件外,梁的位移也需加以控制,从而保证其除满足强度条件外,梁的位移也需加以控制,从而保证其正常工作。正常工作。在工程中,通常对梁在工程中,通常对梁的的挠度挠度加以控制,例如:加以控制,例如:梁的梁的刚度条件刚度条件为:为:通常情况通常情况下,强度条件满足,刚度条件一般也满足。下,强度条件满足,刚度条件一般也满足。但是,但是,当位移限制很严,或按强度条件所选截面过于单薄当位移限制很严,或按强度条件所选截面过于单薄时,刚度条件也起控制作用。时,刚度条件也起控制作用。三、梁的刚度校核三、梁的刚度校核1.梁的梁的挠曲线挠曲线:梁轴线变形后所形成的光滑连续的曲线梁轴线变形后所形成的光滑连续的曲线。B1Fxq qq qwyx 2.梁位移的度量:梁位移的度量:挠度挠度:梁横截面形心的竖向位移:梁横截面形心的竖向位移w,向上的挠度为正,向上的挠度为正转角转角:梁横截面绕中性轴转动的角度:梁横截面绕中性轴转动的角度,逆时针转动为正,逆时针转动为正挠曲线方程挠曲线方程:挠度作为轴线坐标的函数:挠度作为轴线坐标的函数 w=f(x)转角方程转角方程(小变形下小变形下):转角与挠度的关系:转角与挠度的关系图中图中 与与w的正负?的正负?梁的挠曲线梁的挠曲线积分法求梁的挠曲线积分法求梁的挠曲线 2.支承条件与连续条件支承条件与连续条件:1.式中式中C1、C2为积分常数,由梁边界、连续条件确定。为积分常数,由梁边界、连续条件确定。1)支承条件:支承条件:2)连续条件:连续条件:挠曲线是光滑连续唯一的挠曲线是光滑连续唯一的l lFAB 在材料服从胡克定律、且变形很小的前在材料服从胡克定律、且变形很小的前提下提下,载荷与它所引起的变形成线性关系。载荷与它所引起的变形成线性关系。当梁上同时作用几个载荷时,各个载荷当梁上同时作用几个载荷时,各个载荷所引起的变形是各自独立的,互不影响。所引起的变形是各自独立的,互不影响。若计算几个载荷共同作用下在某截面上引若计算几个载荷共同作用下在某截面上引起的变形,则可分别计算各个载荷单独作起的变形,则可分别计算各个载荷单独作用下的变形,然后叠加。用下的变形,然后叠加。叠加法求梁的位移叠加法求梁的位移第二部分第二部分应力状态与强度理论应力状态与强度理论一点的应力状态一点的应力状态 1.一一点点的的应应力力状状态态:通通过过受受力力构构件件一一点点处处各各个个不不同同截截面面上的应力情况上的应力情况。2.研研究究应应力力状状态态的的目目的的:找找出出该该点点的的最最大大正正应应力力和和切切应应力力数数值值及及所所在在截截面面的的方方位位,以以便便研研究究构构件件破破坏坏原原因因并并进进行行失失效效分分析。析。一、应力状态的概念一、应力状态的概念研究应力状态的方法研究应力状态的方法单元体法单元体法 1.单元体单元体:围绕构件内一所截取的微小正六面体。:围绕构件内一所截取的微小正六面体。xOzydzdxdyXYZO y y z z zy yz yz zy yx yx xy xy x x zx xz zx xz (1)应应力力分分量量的的角角标标规规定定:第第一一角角标标表表示示应应力力作作用用面面,第第二二角标表示应力平行的轴,两角标相同时,只用一个角标表示。角标表示应力平行的轴,两角标相同时,只用一个角标表示。(2)面的方位用其法线方向表示)面的方位用其法线方向表示3.截取原始单元体的方法、原则截取原始单元体的方法、原则用用三三个个坐坐标标轴轴在在一一点点截截取取,因因其其微微小小,统统一一看看成成微微小小正正六面体六面体 单元体各个面上的应力已知或可求;单元体各个面上的应力已知或可求;几种受力情况下截取单元体方法:几种受力情况下截取单元体方法:2.单元体上的应力分量单元体上的应力分量平面应力分析的解析法平面应力分析的解析法 1.平面应力状态图示:平面应力状态图示:二、平面应力状态下的应力研究二、平面应力状态下的应力研究 y yx xy x x x xy y y x yx2.任意任意a a角斜截面上的应力角斜截面上的应力 x xy y y x yxABxy nt x xy yx yxdA x y xy yx符号规定:符号规定:角角以以x轴正向为起线,逆时针旋转为正,反之为负轴正向为起线,逆时针旋转为正,反之为负 拉为正,压为负拉为正,压为负 t t使微元产生顺时针转动趋势者为正,反之为负使微元产生顺时针转动趋势者为正,反之为负3.主应力及其方位:主应力及其方位:由主平面定义,令由主平面定义,令t t =0,得:,得:可求出两个相差可求出两个相差90o的的a a0值,对应两个互相垂直主平面。值,对应两个互相垂直主平面。令令得:得:即主平面上的正应力取得所有方向上的即主平面上的正应力取得所有方向上的极值极值。主应力大小:主应力大小:由由、0按代数值大小排序得出:按代数值大小排序得出:1 2 3 判断判断、作用方位作用方位(与两个与两个 0如何对应如何对应)xy箭箭头头指指向向第第几几象象限限(一一、四四),则则(较较大大主主应应力力)在在第第几几象象限限,即即先先判判断断 大大致致方方位位,再再判判断断其其与与算算得得的的a a0相相对对应应,还还是是与与a a0+90o相对应。相对应。xy a a0*xy a a0*4.极值切应力:极值切应力:令:令:,可求出两个相差,可求出两个相差90o 的的 1,代表两个相互垂直的极值切应力方位。,代表两个相互垂直的极值切应力方位。极值切应力:极值切应力:(极值切应力平面与主平面成极值切应力平面与主平面成45o)主应变主应变:沿主应力方向的应变,分别用:沿主应力方向的应变,分别用e e1e e2e e3表示;表示;正应力只引起线应变,切应力只引起剪应变;正应力只引起线应变,切应力只引起剪应变;以主应力表示以主应力表示 二、广义胡克定律二、广义胡克定律一般情况一般情况 以主应力表示以主应力表示 一般情况一般情况 若为平面应力状态若为平面应力状态四个强度理论的相当应力表达式四个强度理论的相当应力表达式四个强度理论的相当应力表达式四个强度理论的相当应力表达式第第4强度理论强度理论形状改变形状改变比能理论比能理论 第第1强度理论强度理论最大拉应最大拉应力理论力理论第第2强度理论强度理论最大伸长最大伸长线应变理论线应变理论第第3强度理论强度理论最大剪应最大剪应力理论力理论第一类强度理论第一类强度理论(脆断破坏的(脆断破坏的 理论)理论)第二类强度理论第二类强度理论(屈服失效的(屈服失效的 理论)理论)强度理论的分类及名称强度理论的分类及名称相当应力表达式相当应力表达式 按某种强度理论进行强度校核时,按某种强度理论进行强度校核时,要保证满足如下两个条件要保证满足如下两个条件:1.所用强度理论与在这种应力状态下发生的破坏所用强度理论与在这种应力状态下发生的破坏形式相对应形式相对应;2.用以确定许用应力用以确定许用应力 的的,也必须是相应于该破也必须是相应于该破坏形式的极限应力。坏形式的极限应力。第一、二部分的应用第一、二部分的应用组组 合合 变变 形形1.组合变形组合变形:2.分类分类-两个平面弯曲的组合两个平面弯曲的组合(斜弯曲斜弯曲)拉伸拉伸(或压缩或压缩)与弯曲的组合,以及偏心拉、压与弯曲的组合,以及偏心拉、压 扭转与弯曲或扭转与拉伸扭转与弯曲或扭转与拉伸(压缩压缩)及弯曲的组合及弯曲的组合3.一般不考虑剪切变形;一般不考虑剪切变形;含弯曲组合变形,一般以弯曲为主,含弯曲组合变形,一般以弯曲为主,其危险截面主要依据其危险截面主要依据Mmax,一般不考虑弯曲剪应力。,一般不考虑弯曲剪应力。杆件在外力作用下,同时发生两种或两种以上基本变形的组合。杆件在外力作用下,同时发生两种或两种以上基本变形的组合。组合变形的概念组合变形的概念用强度准则进行强度计算用强度准则进行强度计算 1.叠叠加加原原理理:在在线线弹弹性性、小小变变形形下下,每每一一组组载载荷荷引引起起的变形和内力彼此不受影响,可采用代数相加;的变形和内力彼此不受影响,可采用代数相加;基本解法基本解法(叠加法叠加法)2.基本解法:基本解法:外力分解或简化外力分解或简化:使每一组力只产生一个方向的一:使每一组力只产生一个方向的一种基本变形种基本变形分别计算各基本变形下的内力及应力分别计算各基本变形下的内力及应力将各基本变形应力进行叠加将各基本变形应力进行叠加(主要对危险截面的危险点主要对危险截面的危险点)对危险点进行应力分析对危险点进行应力分析(1 2 3)基本研究步骤基本研究步骤1 1、分解、分解:简化荷载:用静力等效的载荷,使:简化荷载:用静力等效的载荷,使每一组只引起一种基本变形。每一组只引起一种基本变形。2 2、分别计算、分别计算:按基本变形求解每组载荷作用:按基本变形求解每组载荷作用下的应力、位移。下的应力、位移。3 3、叠加、叠加:按叠加原理叠加求出组合变形的解。:按叠加原理叠加求出组合变形的解。一、斜弯曲一、斜弯曲 对于周边具有棱角的截面,如矩形和工字形截面,对于周边具有棱角的截面,如矩形和工字形截面,最大拉、压应力必然发生在截面的棱角处。可直接根据最大拉、压应力必然发生在截面的棱角处。可直接根据梁的变形情况,确定截面上的最大拉、压应力所在位置,梁的变形情况,确定截面上的最大拉、压应力所在位置,无需确定中性轴位置。无需确定中性轴位置。对于圆截面对于圆截面合成后总弯矩为:合成后总弯矩为:矩形截面改为圆截面后,受力图不变,内力图也不变。矩形截面改为圆截面后,受力图不变,内力图也不变。此时对于圆截面来说,不存在斜弯曲问题,两个平面弯曲合此时对于圆截面来说,不存在斜弯曲问题,两个平面弯曲合成后,还是一个平面弯曲的问题。危险截面成后,还是一个平面弯曲的问题。危险截面A截面上弯矩的合截面上弯矩的合成由矢量来表示。总弯矩的矢量方向与中性轴重合,说明总成由矢量来表示。总弯矩的矢量方向与中性轴重合,说明总弯矩是绕中性轴弯曲(荷载作用平面与中性轴垂直)离中性弯矩是绕中性轴弯曲(荷载作用平面与中性轴垂直)离中性轴最远的两点(轴最远的两点(c,d)是正应力最大和最小的点。)是正应力最大和最小的点。A截面应力分布图截面应力分布图二、拉伸(压缩)与弯曲组合变形二、拉伸(压缩)与弯曲组合变形 当杆上的外力除横向力外,还受有轴向拉(压)力时,所当杆上的外力除横向力外,还受有轴向拉(压)力时,所发生的组合变形。发生的组合变形。计算方法:计算方法:1.分别计算轴向力引起的正应力和横向力引起的正应力;分别计算轴向力引起的正应力和横向力引起的正应力;2.按叠加原理求正应力的代数和。按叠加原理求正应力的代数和。注意注意 如如果果材材料料许许用用拉拉应应力力和和许许用用压压应应力力不不同同,且且截截面面部部分分区区域域受受拉拉,部部分分区区域域受受压压,应应分分别别计计算算出出最最大大拉拉应应力力和和最最大大压压应应力力,并并分别按拉伸、压缩进行强度计算。分别按拉伸、压缩进行强度计算。偏心拉伸(压缩)也归结为拉(压)与弯曲组合变形的问题偏心拉伸(压缩)也归结为拉(压)与弯曲组合变形的问题1.求内力求内力2.求应力求应力3.建立强度条件建立强度条件LABqFF拉伸与平面弯曲的组合拉伸与平面弯曲的组合OzyOOxyzAPezPyPyPzPAyBzPMz=PyPMy=PzPD1azD2ay偏心拉伸或压缩偏心拉伸或压缩横截面上任意点的应力:横截面上任意点的应力:压缩与斜弯曲的组合压缩与斜弯曲的组合三、弯曲与扭转组合变形三、弯曲与扭转组合变形PABC l l 这类问题与前面两类问题有很大的不同,即危险点处于平这类问题与前面两类问题有很大的不同,即危险点处于平面应力状态,必须应用应力状态与强度理论来解决面应力状态,必须应用应力状态与强度理论来解决A截面为危险截面截面为危险截面一、简化外力一、简化外力:P弯曲变形弯曲变形Mn=-Pa扭转变形扭转变形二、分析危险截面:二、分析危险截面:三、分析危险点:三、分析危险点:MPlTPaPPaBAl lWt=2Wt解组合变形的一般步骤解组合变形的一般步骤 第三部分第三部分压压 杆杆 稳稳 定定稳定性稳定性主要针对细长压杆主要针对细长压杆稳定性:稳定性:构件在外力作用下保持其原有平衡状态的能力,是构件在外力作用下保持其原有平衡状态的能力,是杆件承载能力的一个方面。杆件承载能力的一个方面。QQQFFcrQ QQ QQ受压直杆平衡的三种形式受压直杆平衡的三种形式如何判断杆件的稳定与不稳定?如何判断杆件的稳定与不稳定?临界载荷欧拉公式的一般形式临界载荷欧拉公式的一般形式:一端自由,一端固定一端自由,一端固定 :2.02.0一端铰支,一端固定一端铰支,一端固定 :0.70.7 两端固定两端固定 :0.50.5 两端铰支两端铰支 :1.01.0 柔度柔度(细长比细长比):1.细细长长压压杆杆的的临临界界应应力力:临临界界力力除除以以压压杆杆横横截截面面面面积积得到的压应力,用得到的压应力,用 cr表示;表示;横截面对微弯中性轴的横截面对微弯中性轴的惯性半径惯性半径;欧拉公式欧拉公式.经验公式经验公式.临界应力总图临界应力总图 欧拉临界应力公式:欧拉临界应力公式:欧拉公式应用范围:欧拉公式应用范围:线弹性状态:线弹性状态:cr p,即,即 l ll lp细长杆细长杆(大柔度杆大柔度杆),欧拉公式的适用范围;,欧拉公式的适用范围;对于对于Q235钢,钢,E=200GPa,p=200MPa:用柔度表示的临界压力:用柔度表示的临界压力:2.非细长压杆临界应力的经验公式非细长压杆临界应力的经验公式 s cr p时采用经验公式:时采用经验公式:1)cr s,2)l2)lpl ll lS中长杆中长杆(中柔度杆中柔度杆);3)对于对于A3钢:钢:cr=S时时:强度破坏,采用强度公式。强度破坏,采用强度公式。l l l lS粗短杆粗短杆(小柔度杆小柔度杆);直线公式直线公式得到:得到:s粗粗短短杆杆细长杆细长杆中中长长杆杆Cl lp pl l crO采用直线经验公式采用直线经验公式的临界应力总图的临界应力总图A cr=sl lsB cr=a-bl lD三、临界应力总图三、临界应力总图 压杆按柔度分类:压杆按柔度分类:中长杆中长杆(中柔度杆中柔度杆)细长杆细长杆(大柔度杆大柔度杆)粗短杆粗短杆(小柔度杆小柔度杆)直线公式适合合金钢、铝合金、铸铁与松木等中柔度压杆。直线公式适合合金钢、铝合金、铸铁与松木等中柔度压杆。细长杆细长杆发生弹性屈曲发生弹性屈曲 中长杆中长杆发生弹塑性屈曲发生弹塑性屈曲 粗短粗短杆杆不发生屈曲,而发生屈服不发生屈曲,而发生屈服三类不同的压杆三类不同的压杆例例 :1000吨双动薄板液压冲压机的顶出器杆吨双动薄板液压冲压机的顶出器杆为一端固定、一端铰支的压杆。已知杆长为一端固定、一端铰支的压杆。已知杆长l=2m,直径直径d=65mm,d=65mm,材料的材料的E=210GPa,=288MPa,E=210GPa,=288MPa,顶杆工作时承受压力顶杆工作时承受压力F=18.3F=18.3吨,取稳定安全系吨,取稳定安全系数数 =3.0=3.0。试校核该顶杆的稳定性。试校核该顶杆的稳定性。解:解:1 1、计算顶杆的柔度、计算顶杆的柔度2 2、计算临界柔度、计算临界柔度3 3、稳定性校核、稳定性校核应用欧拉公式应用欧拉公式该杆满足稳定性要求该杆满足稳定性要求第四部分第四部分动载荷与动应力动载荷与动应力 前述各章有关构件的工作情况的分析以及强度、刚度、稳前述各章有关构件的工作情况的分析以及强度、刚度、稳定性的计算都是在定性的计算都是在静荷载静荷载作用下进行的,即认为荷载从零开作用下进行的,即认为荷载从零开始缓慢增加,杆件上各点加速度很小,可以不加考虑,荷载始缓慢增加,杆件上各点加速度很小,可以不加考虑,荷载加到最终值后也不再变化。加到最终值后也不再变化。在工程实际问题中:在工程实际问题中:一些一些高速运动高速运动的构件或零部件,以及的构件或零部件,以及加速提升加速提升的构件,的构件,其质点具有明显其质点具有明显加速度。加速度。再如锻锤的锤杆、受重物沿铅直或水平方向再如锻锤的锤杆、受重物沿铅直或水平方向冲击的构件,冲击的构件,更是在瞬间速度发生急剧改变。更是在瞬间速度发生急剧改变。显然这些倩况不能作为静荷载来考虑,称之为显然这些倩况不能作为静荷载来考虑,称之为动荷载动荷载,在,在动荷载作用下的构件的计算称为构件的动力计算。动荷载作用下的构件的计算称为构件的动力计算。概述概述 构件的动力计算,包括构件的荷载和内力分析;应力与强度、构件的动力计算,包括构件的荷载和内力分析;应力与强度、变形与刚度的分析与计算。变形与刚度的分析与计算。对动力学的学习与研究对动力学的学习与研究(基本定理与动静法基本定理与动静法)提供了构件动力提供了构件动力计算分析的前提。计算分析的前提。在静荷载下对杆件基本变形及组合变形的内力、应力、变形在静荷载下对杆件基本变形及组合变形的内力、应力、变形分析,为构件的动荷载下的应力与变形计算奠定了基础。把两方分析,为构件的动荷载下的应力与变形计算奠定了基础。把两方面结合起来应用于杆件的动力计算。面结合起来应用于杆件的动力计算。对动荷载作用下的构件,只要应力不超过比例极限对动荷载作用下的构件,只要应力不超过比例极限F F,胡克,胡克定律仍然适用弹性模量也与静载下相同:其强度、刚度和稳定定律仍然适用弹性模量也与静载下相同:其强度、刚度和稳定性的条件均与静荷载作用下相同,只不过将其公式中的静荷载与性的条件均与静荷载作用下相同,只不过将其公式中的静荷载与静应力、静变形以动荷载与动应力、动变形代之。静应力、静变形以动荷载与动应力、动变形代之。一、作匀加速一、作匀加速直线直线运动构件运动构件一、匀加速运动构件的应力与强度一、匀加速运动构件的应力与强度 惯性力法惯性力法 设有等直杆:长设有等直杆:长L L,截面积,截面积A A,比重比重,受拉力,受拉力F F 作用作用,以等以等加速度加速度a a 运动,求:构件的应力、变形(摩擦力不计)。运动,求:构件的应力、变形(摩擦力不计)。maPxdx1.1.动静法动静法(达朗贝尔原理达朗贝尔原理)对作等加速度运动或等速转动构件进行受力对作等加速度运动或等速转动构件进行受力分析时,可以认为构件的每一质点上作用着分析时,可以认为构件的每一质点上作用着与加与加速度速度a a方向相反的虚加惯性力方向相反的虚加惯性力,其大小等于其大小等于质量与质量与加速度的乘积加速度的乘积。从而使质点系上的真实力系与虚。从而使质点系上的真实力系与虚加的惯性力系在形式上组成平衡力系,这就是达加的惯性力系在形式上组成平衡力系,这就是达朗贝尔原理即动静法。朗贝尔原理即动静法。当构件作匀速直线运动时,加速度等于零,当构件作匀速直线运动时,加速度等于零,惯性力也等于零;就惯性力而言与构件处于静止惯性力也等于零;就惯性力而言与构件处于静止状态是相同的。对这类运动下的构件,可视为静状态是相同的。对这类运动下的构件,可视为静荷载的作用。荷载的作用。例例1 1 一吊车以匀加速度起吊重物一吊车以匀加速度起吊重物Q Q,若吊索的横截面积为若吊索的横截面积为A A,材料,材料 比重为比重为,上升加速度为,上升加速度为a a,试计算吊索中的应力。,试计算吊索中的应力。QammxQx解解:惯性力为:惯性力为:,吊索截面上的内力:吊索截面上的内力:根据动静法,列平衡方程:根据动静法,列平衡方程:解得:解得:重物重物与与吊索吊索的重力的重力:吊索中的动应力为:吊索中的动应力为:当重物静止或作匀速直线运动时,吊索横截面当重物静止或作匀速直线运动时,吊索横截面上的静荷应力为:上的静荷应力为:代入上式,并引入记号代入上式,并引入记号 ,称为,称为动荷系数动荷系数,则:,则:Qx于是,动载荷作用下构件的于是,动载荷作用下构件的强度条件强度条件为:为:式中得式中得 仍取材料在静载荷作用下的许用应力。仍取材料在静载荷作用下的许用应力。动荷系数动荷系数 的物理意义:的物理意义:是动载荷、动荷应力和动荷变形与是动载荷、动荷应力和动荷变形与 静载荷、静荷应力和静荷变形之比。因此根据胡克定律,有以静载荷、静荷应力和静荷变形之比。因此根据胡克定律,有以 下重要关系:下重要关系:分别表示静载荷,静应力,静应变和静位移。分别表示静载荷,静应力,静应变和静位移。式中式中 分别表示动载荷,动应力,动应变和动位移;分别表示动载荷,动应力,动应变和动位移;vFa受冲击受冲击的构件的构件冲击物冲击物冲击问题的特点:冲击问题的特点:结构(受冲击构件)受外力(冲击结构(受冲击构件)受外力(冲击物)作用的时间很短,冲击物的速度物)作用的时间很短,冲击物的速度在很短的时间内发生很大的变化,甚在很短的时间内发生很大的变化,甚至降为零,冲击物得到一个很大的反至降为零,冲击物得到一个很大的反向加速度向加速度,结构受到冲击力的作用。,结构受到冲击力的作用。采用采用能量法能量法近似计算冲击时构件内的最大应力和变形。近似计算冲击时构件内的最大应力和变形。二、构件受冲击时的应力与强度二、构件受冲击时的应力与强度根据能量守恒定律,即根据能量守恒定律,即 :冲击物接触被冲击物后,速度冲击物接触被冲击物后,速度0 0,释放出的动能,释放出的动能;:冲击物接触被冲击物后,所减少冲击物接触被冲击物后,所减少的势能;的势能;:被冲击构件在冲击物的速度被冲击构件在冲击物的速度0 0时所增加的应变能时所增加的应变能。计算冲击问题时所作的假设:计算冲击问题时所作的假设:(1)冲击物无回弹,并且不计冲击物的变形,冲击物冲击物无回弹,并且不计冲击物的变形,冲击物和被冲击物在冲击后共同运动,形成一个运动系统。和被冲击物在冲击后共同运动,形成一个运动系统。(2)不考虑被冲击物的质量,冲击力瞬间传遍构件,不考虑被冲击物的质量,冲击力瞬间传遍构件,且材料服从胡克定律且材料服从胡克定律(3)冲击过程中,忽略声、光、热能的转化,即只有冲击过程中,忽略声、光、热能的转化,即只有势能与动能的转化。势能与动能的转化。式中式中 为冲击时的为冲击时的动荷系数动荷系数,其中其中 是结构中冲击受力点在静载荷(大小为冲击物重量)是结构中冲击受力点在静载荷(大小为冲击物重量)作用下的垂直位移。作用下的垂直位移。因为因为所以冲击应力为所以冲击应力为强度条件为强度条件为1.若冲击物是以一垂直速度若冲击物是以一垂直速度v 作用于构件上,则由作用于构件上,则由 可得:可得:关于动荷系数关于动荷系数 的讨论的讨论:2.当当h=0或或v=0时,重物突然放在构件上,此时时,重物突然放在构件上,此时 。3.不仅与冲击物的动能有关,与载荷、构件截面尺寸有关,不仅与冲击物的动能有关,与载荷、构件截面尺寸有关,更与更与 有关。这也是与静应力的根本不同点。构件越易变有关。这也是与静应力的根本不同点。构件越易变 形,刚度越小,即形,刚度越小,即“柔能克刚柔能克刚”。水平冲击时的动荷系数为水平冲击时的动荷系数为(表示水平冲击时假设以冲击物重量大小表示水平冲击时假设以冲击物重量大小的力沿水平方向以静载荷作用于冲击点的力沿水平方向以静载荷作用于冲击点时,该点沿水平方向的位移。时,该点沿水平方向的位移。)关于其它章节交变应力交变应力 能量方法能量方法超静定结构超静定结构材料的力学性能材料的力学性能截面的几何性质截面的几何性质