(完整word版)高中数学数列知识点总结(2),推荐文档.pdf
-
资源ID:83288736
资源大小:55.59KB
全文页数:5页
- 资源格式: PDF
下载积分:4.3金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
(完整word版)高中数学数列知识点总结(2),推荐文档.pdf
数列基础知识点和方法归纳1 1.等差数列的定义与性质定义:1nnaad(d为常数),11naand等差中项:xAy,成等差数列2Axy前 n项和11122nnaann nSnad性质:na是等差数列(1)若 mnpq,则mnpqaaaa;(2)数列12212,nnnaaa仍为等差数列,232nnnnnSSSSS,仍为等差数列,公差为dn2;(3)若三个成等差数列,可设为adaad,(4)若nnab,是等差数列,且前 n项和分别为nnST,则2121mmmmaSbT(5)na为等差数列2nSanbn(ab,为常数,是关于 n 的常数项为 0 的二次函数)nS的最值可求二次函数2nSanbn的最值;或者求出na中的正、负分界项,即:当100ad,解不等式组100nnaa可得nS达到最大值时的 n值.当100ad,由100nnaa可得nS达到最小值时的 n值.(6)项数为偶数n2 的等差数列na,有),)()()(11122212为中间两项nnnnnnnaaaanaanaanSndSS奇偶,1nnaaSS偶奇.(7)项数为奇数12n的等差数列na,有)()12(12为中间项nnnaanS,naSS偶奇,1nnSS偶奇.数列基础知识点和方法归纳2 2.等比数列的定义与性质定义:1nnaqa(q为常数,0q),11nnaa q.等比中项:xGy、成等比数列2Gxy,或 Gxy.前 n项和:11(1)1(1)1nnna qSaqqq(要注意!)性质:na是等比数列(1)若 mnpq,则mnpqaaaa(2)232nnnnnSSSSS,仍为等比数列,公比为nq.注意:由nS求na时应注意什么?1n时,11aS;2n时,1nnnaSS.3求数列通项公式的常用方法(1)求差(商)法如:数列na,12211125222nnaaan,求na(2)叠乘法如:数列na中,1131nnanaan,求na(3)等差型递推公式由110()nnaaf naa,求na,用迭加法文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2数列基础知识点和方法归纳3 练习数列na中,111132nnnaaan,求na(1312nna)(4)等比型递推公式1nnacad(cd、为常数,010ccd,)可转化为等比数列,设111nnnnaxc axacacx令(1)cxd,1dxc,1ndac是首项为11dacc,为公比的等比数列1111nnddaaccc,1111nnddaaccc(5)倒数法如:11212nnnaaaa,求na附:公 式 法、利 用1(2)1(1)nnSSnS nna、累 加 法、累 乘 法.构 造 等 差 或 等 比1nnapaq或1()nnapaf n、待定系数法、对数变换法、迭代法、数学归纳法、换元法)4.求数列前 n 项和的常用方法(1)裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项.如:na是公差为d的等差数列,求111nkkka a(2)错位相减法若na为等差数列,nb为等比数列,求数列n na b(差比数列)前 n项和,可由nnSqS,求nS,其中 q为nb的公比.文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2数列基础知识点和方法归纳4 如:2311234nnSxxxnx23412341nnnx Sxxxxnxnx2111nnnx Sxxxnx1x时,2111nnnxnxSxx,1x时,11232nn nSn(3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.121121nnnnnnSaaaaSaaaa相加12112nnnnSaaaaaa练习已知22()1xf xx,则111(1)(2)(3)(4)234fffffff(附:a.用倒序相加法求数列的前n 项和如果一个数列 an,与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n 项和公式的推导,用的就是“倒序相加法”。b.用公式法求数列的前n 项和对等差数列、等比数列,求前n 项和 Sn可直接用等差、等比数列的前n 项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。c.用裂项相消法求数列的前n 项和裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n 项和。d.用错位相减法求数列的前n 项和错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列 an bn中,an成等差数列,bn 成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前 n 项和。e.用迭加法求数列的前n 项和迭加法主要应用于数列 an 满足 an+1=an+f(n),其中 f(n)是等差数列或等比数列的条件下,可把这个式子变成 an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出 Sn。f.用分组求和法求数列的前n 项和所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2数列基础知识点和方法归纳5 分为几个等差、等比或常见的数列,然后分别求和,再将其合并。g.用构造法求数列的前n 项和所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n 项和。文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2文档编码:CC3V8W3W1M6 HG1X7Y5V1J3 ZO10O4Z3U1N2