(完整word版)高中数学函数的单调性练习题及其答案(word文档良心出品).pdf
-
资源ID:83288897
资源大小:56.58KB
全文页数:5页
- 资源格式: PDF
下载积分:4.3金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
(完整word版)高中数学函数的单调性练习题及其答案(word文档良心出品).pdf
-1 函数的单调性一、选择题:1在区间(0,)上不是增函数的函数是()Ay=2x1 By=3x21 Cy=x2D y=2x2x1 2函数 f(x)=4x2mx5 在区间 2,上是增函数,在区间(,2)上是减函数,则 f(1)等于()A 7 B1 C17 D 25 3函数 f(x)在区间(2,3)上是增函数,则y=f(x5)的递增区间是()A(3,8)B(7,2)C(2,3)D(0,5)4函数 f(x)=21xax在区间(2,)上单调递增,则实数a 的取值范围是()A(0,21)B(21,)C(2,)D(,1)(1,)5已知函数f(x)在区间 a,b上单调,且 f(a)f(b)0,则方程f(x)=0 在区间 a,b内()A至少有一实根B至多有一实根C没有实根D必有唯一的实根6已知函数f(x)=82x x2,如果 g(x)=f(2x2),那么函数g(x)()A在区间(1,0)上是减函数B在区间(0,1)上是减函数C在区间(2,0)上是增函数 D在区间(0,2)上是增函数7已知函数f(x)是 R 上的增函数,A(0,1)、B(3,1)是其图象上的两点,那么不等式|f(x1)|1 的解集的补集是()A(1,2)B(1,4)C(,1)4,)D(,1)2,)8已知定义域为R 的函数 f(x)在区间(,5)上单调递减,对任意实数t,都有 f(5t)f(5t),那么下列式子一定成立的是()Af(1)f(9)f(13)Bf(13)f(9)f(1)Cf(9)f(1)f(13)D f(13)f(1)f(9)9函数)2()(|)(xxxgxxf和的递增区间依次是()A 1,(,0,(B),1,0,(C1,(),0D),1),0-2 10已知函数2212fxxax在区间4,上是减函数,则实数a的取值范围是()Aa3 Ba 3 Ca5 Da3 11已知 f(x)在区间(,)上是增函数,a、bR 且 ab0,则下列不等式中正确的是()Af(a)f(b)f(a)f(b)Bf(a)f(b)f(a)f(b)Cf(a)f(b)f(a)f(b)D f(a)f(b)f(a)f(b)12定义在 R 上的函数 y=f(x)在(,2)上是增函数,且 y=f(x2)图象的对称轴是 x=0,则()Af(1)f(3)Bf(0)f(3)Cf(1)=f(3)Df(2)f(3)二、填空题:13函数 y=(x1)-2的减区间是 _ _14函数 y=x2x1 2 的值域为 _ _15、设yfx是R上的减函数,则3yfx的单调递减区间为.16、函数 f(x)=ax24(a1)x3 在2,上递减,则 a 的取值范围是_ 三、解答题:17f(x)是定义在(0,)上的增函数,且f(yx)=f(x)f(y)(1)求 f(1)的值(2)若 f(6)=1,解不等式f(x3)f(x1)2 18函数 f(x)=x31 在 R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论19试讨论函数f(x)=21x在区间 1,1上的单调性-3 20设函数 f(x)=12xax,(a 0),试确定:当a 取什么值时,函数f(x)在 0,)上为单调函数21已知 f(x)是定义在(2,2)上的减函数,并且f(m1)f(12m)0,求实数 m 的取值范围22已知函数f(x)=xaxx22,x 1,(1)当 a=21时,求函数f(x)的最小值;(2)若对任意x 1,),f(x)0 恒成立,试求实数a 的取值范围-4 参考答案一、选择题:CDBBD ADCCA BA 二、填空题:13.(1,),14.(,3),15.3,,21,三、解答题:17.解析:在等式中0yx令,则 f(1)=0在等式中令x=36,y=6 则.2)6(2)36(),6()36()636(fffff故原不等式为:),36()1()3(fxfxf即 fx(x3)f(36),又 f(x)在(0,)上为增函数,故不等式等价于:.23153036)3(00103xxxxx18.解析:f(x)在 R 上具有单调性,且是单调减函数,证明如下:设 x1、x2(,),x1x2,则 f(x1)=x131,f(x2)=x231f(x1)f(x2)=x23x13=(x2x1)(x12x1x2x22)=(x2x1)(x122x)243x22 x1x2,x2x10 而(x122x)243x220,f(x1)f(x2)函数 f(x)=x31 在(,)上是减函数19.解析:设 x1、x2 1,1且 x1x2,即 1x1x21f(x1)f(x2)=211x221x=2221222111)1()1(xxxx=2221121211)(xxxxxxx2x10,222111xx0,当 x10,x20 时,x1x20,那么 f(x1)f(x2)当 x10,x20 时,x1x20,那么 f(x1)f(x2)故 f(x)=21x在区间 1,0上是增函数,f(x)=21x在区间 0,1上是减函数20.解析:任取x1、x20,且 x1x2,则f(x1)f(x2)=121x122xa(x1x2)=1122212221xxxxa(x1x2)-5=(x1x2)(11222121xxxxa)(1)当 a 1 时,11222121xxxx1,又 x1x20,f(x1)f(x2)0,即 f(x1)f(x2)a1 时,函数f(x)在区间 0,)上为减函数(2)当 0 a1 时,在区间 0,上存在x1=0,x2=212aa,满足 f(x1)=f(x2)=1 0a1 时,f(x)在,上不是单调函数注:判断单调性常规思路为定义法;变形过程中11222121xxxx1 利用了121x|x1|x1;122xx2;从 a 的范围看还须讨论0 a1 时 f(x)的单调性,这也是数学严谨性的体现21.解析:f(x)在(2,2)上是减函数由 f(m1)f(12m)0,得 f(m1)f(12m)32232131211,2212212mmmmmmm即解得3221m,m 的取值范围是(32,21)22.解析:(1)当 a=21时,f(x)=xx21 2,x1,)设 x2x11,则 f(x2)f(x1)=x21122121xxx=(x2x1)21212xxxx=(x2x1)(12121xx)x2x11,x2x10,12121xx0,则 f(x2)f(x1)可知 f(x)在 1,)上是增函数f(x)在区间 1,)上的最小值为f(1)=27(2)在区间 1,)上,f(x)=xaxx220 恒成立x2 2xa0 恒成立设 y=x2 2xa,x1,),由 y=(x1)2a 1 可知其在 1,)上是增函数,当 x=1 时,ymin=3a,于是当且仅当ymin=3a0 时函数 f(x)0 恒成立故a 3