三次数学危机.ppt
三次数学危机三次数学危机 1 历史上,数学的发展有顺利也有曲折。大历史上,数学的发展有顺利也有曲折。大的挫折也可以叫做危机。危机也意味着挑战,的挫折也可以叫做危机。危机也意味着挑战,危机的解决就意味着进步。所以,危机往往危机的解决就意味着进步。所以,危机往往是数学发展的先导。数学发展史上有三次数是数学发展的先导。数学发展史上有三次数学危机。每一次数学危机,都是学危机。每一次数学危机,都是数学的基本数学的基本部分部分受到质疑。实际上,也恰恰是这受到质疑。实际上,也恰恰是这三次危三次危机,引发了数学上的三次思想解放机,引发了数学上的三次思想解放,大大推,大大推动了数学科学的发展。动了数学科学的发展。2 一、第一次数学危机一、第一次数学危机 第第一一次次数数学学危危机机是是由由 不不能能写写成成两两个个整整数数之之比比引引发发的的,我我们们以以前前已已经经专专门讨论过,现再简要回顾一下。门讨论过,现再简要回顾一下。3 这这一一危危机机发发生生在在公公元元前前5世世纪纪,危危机机来来源源于于:当当时时认认为为所所有有的的数数都都能能表表示示为为整整数数比比,但但突突然然发发现现 不不能能表表为为整整数数比比。其实质是:其实质是:是无理数,全体整数之比是无理数,全体整数之比构成的是有理数系,有理数系需要扩充,需构成的是有理数系,有理数系需要扩充,需要添加无理数。要添加无理数。4 当时古希腊的欧多克索斯部分地解决了这一危当时古希腊的欧多克索斯部分地解决了这一危机。他采用了一个十分巧妙的关于机。他采用了一个十分巧妙的关于“两个量之比两个量之比”的新说法,回避了的新说法,回避了 是无理数的实质,而是用几何是无理数的实质,而是用几何的方法去处理不可公度比。这样做的结果,使几何的方法去处理不可公度比。这样做的结果,使几何的基础牢靠了,几何从全部数学中脱颖而出。欧几的基础牢靠了,几何从全部数学中脱颖而出。欧几里得的里得的几何原本几何原本中也采用了这一说法,以致在中也采用了这一说法,以致在以后的近二千年中,几何变成了几乎是全部严密数以后的近二千年中,几何变成了几乎是全部严密数学的基础。学的基础。但是彻底解决这一危机是在但是彻底解决这一危机是在19世纪,依赖实数世纪,依赖实数理论的建立。理论的建立。5 二、第二次数学危机二、第二次数学危机 第二次数学危机发生在牛顿创立微积分的十七世纪。当第二次数学危机发生在牛顿创立微积分的十七世纪。当时的背景是:时的背景是:微积分诞生之后,数学迎来一次空前的繁荣微积分诞生之后,数学迎来一次空前的繁荣时期。数学家们把微积分应用于各个领域,并获得了丰硕时期。数学家们把微积分应用于各个领域,并获得了丰硕的成果。在数学本身他们又发展了微分方程的理论,无穷的成果。在数学本身他们又发展了微分方程的理论,无穷级数的理论,大大地扩展了数学研究的范围。这一时期被级数的理论,大大地扩展了数学研究的范围。这一时期被称为英雄世纪。但微积分在基础理论上存在很多缺陷。称为英雄世纪。但微积分在基础理论上存在很多缺陷。第第一次数学危机是由毕达哥拉斯学派内部提出的,第二次数一次数学危机是由毕达哥拉斯学派内部提出的,第二次数学危机则是由牛顿学派的外部、贝克莱大主教提出的,是学危机则是由牛顿学派的外部、贝克莱大主教提出的,是对牛顿对牛顿“无穷小量无穷小量”说法的质疑引起的。说法的质疑引起的。6 1危机的引发危机的引发 1)牛顿的)牛顿的“无穷小无穷小”牛顿的微积分是一项划时代的科学成就,蕴含牛顿的微积分是一项划时代的科学成就,蕴含着巨大的智慧和创新,但也有逻辑上的问题。我着巨大的智慧和创新,但也有逻辑上的问题。我们来看一个例子。们来看一个例子。微积分的一个来源,是想求运动物体在某一时微积分的一个来源,是想求运动物体在某一时刻的刻的瞬时速度瞬时速度。在牛顿之前,只能求一段时间内。在牛顿之前,只能求一段时间内的的平均速度平均速度,无法求某一时刻的瞬时速度。,无法求某一时刻的瞬时速度。7 例如,设自由落体在时间例如,设自由落体在时间 下落的距离为下落的距离为 ,有公式有公式 ,其中,其中 是固定的重力加速度。我是固定的重力加速度。我们要求物体在们要求物体在 的瞬时速度,先求的瞬时速度,先求 。(*)8 当当 变成无穷小时,右端的变成无穷小时,右端的 也变成无穷小,因而上式右端就可以认为也变成无穷小,因而上式右端就可以认为是是 ,这就是物体在,这就是物体在 时的瞬时速度,时的瞬时速度,它是两个无穷小之比。它是两个无穷小之比。牛顿的这一方法很好用,解决了大量过牛顿的这一方法很好用,解决了大量过去无法解决的科技问题。但是逻辑上不严去无法解决的科技问题。但是逻辑上不严格,遭到责难。格,遭到责难。9 2)贝克莱的发难)贝克莱的发难 英国的贝克莱大主教发表文章猛烈英国的贝克莱大主教发表文章猛烈攻击牛顿的理论。攻击牛顿的理论。贝克莱问道:贝克莱问道:“无穷小无穷小”作为一个作为一个量,究竟是不是量,究竟是不是0?10 如果是如果是0,上式左端当,上式左端当 成无穷小后分母为成无穷小后分母为0,就,就没有意义了。如果不是没有意义了。如果不是0,上式右端的,上式右端的 就不能就不能任意去掉。任意去掉。在推出上式时,假定了在推出上式时,假定了 才能做除法,所以才能做除法,所以上式的成立是以上式的成立是以 为前提的。那么,为什么又为前提的。那么,为什么又可以让可以让 而求得瞬时速度呢?而求得瞬时速度呢?因此,牛顿的这一套运算方法,就如同从因此,牛顿的这一套运算方法,就如同从 出发,两端同除以出发,两端同除以0,得出,得出5=3一样一样的荒谬。的荒谬。(*)11 贝克莱还讽刺挖苦说:即然贝克莱还讽刺挖苦说:即然 和和 都变都变成成“无穷小无穷小”了,而无穷小作为一个量,既了,而无穷小作为一个量,既不是不是0,又不是非,又不是非0,那它一定是,那它一定是“量的鬼魂量的鬼魂”了。了。这就是著名的这就是著名的“贝克莱悖论贝克莱悖论”。对牛顿微积分的这一责难并不是由数学家对牛顿微积分的这一责难并不是由数学家提出的,但是,非常击中要害。提出的,但是,非常击中要害。12贝克莱的质问是击中要害的贝克莱的质问是击中要害的数学家在将近数学家在将近200年的时间里,不能彻底年的时间里,不能彻底反驳贝克莱的责难。反驳贝克莱的责难。直至柯西创立极限理论,才较好地反驳了直至柯西创立极限理论,才较好地反驳了贝克莱的责难。贝克莱的责难。直至魏尔斯特拉斯创立直至魏尔斯特拉斯创立“”语言,语言,才彻底地反驳了贝克莱的责难。才彻底地反驳了贝克莱的责难。13 3)实践是检验真理的唯一标准)实践是检验真理的唯一标准 应当承认,贝克莱的责难是有道理的。应当承认,贝克莱的责难是有道理的。“无无穷小穷小”的方法在概念上和逻辑上都缺乏基础。牛的方法在概念上和逻辑上都缺乏基础。牛顿和当时的其它数学家并不能在逻辑上严格说清顿和当时的其它数学家并不能在逻辑上严格说清“无穷小无穷小”的方法。数学家们相信它,只是由于的方法。数学家们相信它,只是由于它使用起来方便有效,并且得出的结果总是对的。它使用起来方便有效,并且得出的结果总是对的。特别是像海王星的发现那样鼓舞人心的例子,显特别是像海王星的发现那样鼓舞人心的例子,显示出牛顿的理论和方法的巨大威力。所以,人们示出牛顿的理论和方法的巨大威力。所以,人们不大相信贝克莱的指责。这表明,在大多数人的不大相信贝克莱的指责。这表明,在大多数人的脑海里,脑海里,“实践是检验真理的唯一标准。实践是检验真理的唯一标准。”14 2危机的实质危机的实质 第一次数学危机的实质是第一次数学危机的实质是“不是有不是有理数,而是无理数理数,而是无理数”。那么第二次数学危机。那么第二次数学危机的实质是什么?应该说,是的实质是什么?应该说,是极限的概念不清极限的概念不清楚,极限的理论基础不牢固。楚,极限的理论基础不牢固。也就是说,微也就是说,微积分理论缺乏逻辑基础。积分理论缺乏逻辑基础。15 其实,在牛顿把瞬时速度说成其实,在牛顿把瞬时速度说成“物体所走的无穷物体所走的无穷小距离与所用的无穷小时间之比小距离与所用的无穷小时间之比”的时候,这种说的时候,这种说法本身就是不明确的,是含糊的。法本身就是不明确的,是含糊的。当然,牛顿也曾在他的著作中说明,所谓当然,牛顿也曾在他的著作中说明,所谓“最最终的比终的比”,就是分子、分母要成为,就是分子、分母要成为0还不是还不是0时的比时的比例如(例如(*)式中的)式中的gt,它不是,它不是“最终的量的比最终的量的比”,而是,而是“比所趋近的极限比所趋近的极限”。他这里虽然提出和使用了他这里虽然提出和使用了“极限极限”这个词,但这个词,但并没有明确说清这个词的意思。并没有明确说清这个词的意思。16 德国的莱布尼茨虽然也同时发明了微积德国的莱布尼茨虽然也同时发明了微积分,但是也没有明确给出极限的定义。分,但是也没有明确给出极限的定义。正因为如此,此后近二百年间的数学家,正因为如此,此后近二百年间的数学家,都不能满意地解释贝克莱提出的悖论。都不能满意地解释贝克莱提出的悖论。所以,由所以,由“无穷小无穷小”引发的第二次数学引发的第二次数学危机,危机,实质上是缺少严密的极限概念和极限实质上是缺少严密的极限概念和极限理论作为微积分学的基础。理论作为微积分学的基础。17牛顿莱布尼茨18 3危机的解决危机的解决 1)必要性)必要性 微积分虽然在发展,但微积分逻辑微积分虽然在发展,但微积分逻辑基础上存在的问题是那样明显,这毕竟基础上存在的问题是那样明显,这毕竟是数学家的一块心病。是数学家的一块心病。19 而且,随着时间的推移,研究范围的扩大,而且,随着时间的推移,研究范围的扩大,类似的悖论日益增多。数学家在研究无穷级类似的悖论日益增多。数学家在研究无穷级数的时候,做出许多错误的证明,并由此得数的时候,做出许多错误的证明,并由此得到许多错误的结论。由于没有严格的极限理到许多错误的结论。由于没有严格的极限理论作为基础。数学家们在有限与无限之间任论作为基础。数学家们在有限与无限之间任意通行(不考虑无穷级数收敛的问题)。意通行(不考虑无穷级数收敛的问题)。20 因因此此,进进入入19世世纪纪时时,一一方方面面微微积积分分取取得得的的成成就就超超出出人人们们的的预预料料,另另一一方方面面,大大量量的的数数学学理理论论没没有有正正确确、牢牢固固的的逻逻辑辑基基础础,因因此此不不能能保保证证数数学学结结论论是是正正确确无无误的。误的。历史要求为微积分学说奠基。历史要求为微积分学说奠基。21 2)严格的极限理论的建立)严格的极限理论的建立 到到19世纪,一批杰出数学家辛勤、世纪,一批杰出数学家辛勤、天才的工作,终于逐步建立了严格的极限天才的工作,终于逐步建立了严格的极限理论,并把它作为微积分的基础。理论,并把它作为微积分的基础。应该指出,严格的极限理论的建立是应该指出,严格的极限理论的建立是逐步的、漫长的。逐步的、漫长的。22 在在18世纪时,人们已经建立了极限理论,但世纪时,人们已经建立了极限理论,但那是初步的、粗糙的。那是初步的、粗糙的。达朗贝尔在达朗贝尔在1754年指出,必须用可靠的理论年指出,必须用可靠的理论去代替当时使用的粗糙的极限理论。但他本人未能去代替当时使用的粗糙的极限理论。但他本人未能提供这样的理论。提供这样的理论。19世纪初,捷克数学家波尔查诺开始将严格世纪初,捷克数学家波尔查诺开始将严格的论证引入数学分析,他写的的论证引入数学分析,他写的无穷的悖论无穷的悖论一书一书中包含许多真知灼见。中包含许多真知灼见。23 而做出决定性工作、可称为分析学的而做出决定性工作、可称为分析学的奠基人的是奠基人的是法国数学家柯西法国数学家柯西(A.L.Cauchy,17891857)。他在)。他在18211823年间出版的年间出版的分析教程分析教程和和无穷小计无穷小计算讲义算讲义是数学史上划时代的著作。他对极是数学史上划时代的著作。他对极限给出比较精确的定义,然后用它定义连续、限给出比较精确的定义,然后用它定义连续、导数、微分、定积分和无穷级数的收敛性,导数、微分、定积分和无穷级数的收敛性,已与我们现在教科书上的差不太多了。已与我们现在教科书上的差不太多了。24柯西波尔查诺波尔查诺25 3)严格的实数理论的建立)严格的实数理论的建立 对以往理论的再认识对以往理论的再认识 后来的一些发现,使人们认识到,极限后来的一些发现,使人们认识到,极限理论的进一步严格化,需要实数理论的严格理论的进一步严格化,需要实数理论的严格化。微积分或者说数学分析,是在实数范围化。微积分或者说数学分析,是在实数范围内研究的。但是,下边两件事,表明极限概内研究的。但是,下边两件事,表明极限概念、连续性、可微性和收敛性对实数系的依念、连续性、可微性和收敛性对实数系的依赖比人们想象的要深奥得多。赖比人们想象的要深奥得多。26 一件事是,一件事是,1874年年德国数学家魏尔斯特拉斯德国数学家魏尔斯特拉斯(K.T.W.Weirstrass,18151897)构造了一个)构造了一个 “点点连续而点点不可导的函数点点连续而点点不可导的函数”。“连续函数连续函数”在直观上是在直观上是“函数曲线没有间断,函数曲线没有间断,连在一起连在一起”,而,而“函数在一点可导函数在一点可导”直观上是直观上是“函函数曲线在该点有切线数曲线在该点有切线”。所以,在直观上。所以,在直观上“连续连续”与与“可导可导”有密切的联系。有密切的联系。这之前甚至有人还证明过:函数在连续点上都这之前甚至有人还证明过:函数在连续点上都可导(当然是错误的)。因此根本不可想象,还会可导(当然是错误的)。因此根本不可想象,还会有有“点点连续而点点不可导的函数点点连续而点点不可导的函数”。27 魏尔斯特拉斯魏尔斯特拉斯(18151897)德国数学家。1815年10月31日生于威斯特法伦州的奥斯滕费尔德,1897年2月19日卒于柏林。1834年入波恩大学学习法律和财政。1838年转学数学。18421856年,先后在几所中学任教。1854年3月31日获得柯尼斯堡大学名誉博士学位。1856年10月受聘为柏林大学助理教授,同年成为柏林科学院成员,1864年升为教授。28 魏尔斯特拉斯魏尔斯特拉斯 关于关于 “点点连续而点点不可导的函数点点连续而点点不可导的函数”的例子是的例子是 其中其中 是奇数,是奇数,使使 。29 另一件事是德国数学家黎曼另一件事是德国数学家黎曼(B.Riemann,18261866)发现,)发现,柯西把定积分限制于连续函数是没有必柯西把定积分限制于连续函数是没有必要的。要的。黎曼证明了,被积函数不连续,黎曼证明了,被积函数不连续,其定积分也可能存在。其定积分也可能存在。黎曼还造出一个函数,当自变量取黎曼还造出一个函数,当自变量取无理数时它是连续的,当自变量取有理无理数时它是连续的,当自变量取有理数时它是不连续的。数时它是不连续的。30 黎曼黎曼 1826年9月17日,黎曼生于德国北部汉诺威的布雷塞伦茨村,父亲是一个乡村的穷苦牧师。他六岁开始上学,14岁进入大学预科学习,19岁按其父亲的意愿进入哥廷根大学攻读哲学和神学,1847年,黎曼转到柏林大学学习,成为雅可比、狄利克莱、施泰纳、艾森斯坦的学生。1849年重回哥廷根大学攻读博士学位,成为高斯晚年的学生。31 这这些些例例子子使使数数学学家家们们越越来来越越明明白白,在在为为分分析析建建立立一一个个完完善善的的基基础础方方面面,还还需需要要再再前前进进一一步步:即即需需 要要理解和阐明实数系的更深刻的性质。理解和阐明实数系的更深刻的性质。32 魏尔斯特拉斯的贡献魏尔斯特拉斯的贡献 德德 国国 数数 学学 家家 魏魏 尔尔 斯斯 特特 拉拉 斯斯(K a r l Weierstrass,18151897)的的努努力力,终终于于使使分分析析学学从从完完全全依依靠靠运运动动学学、直直观观理理解解和和几几何何概概念念中中解解放放出出来来。他他的的成成功功产产生生了了深深远远的的影影响响,主主要要表表现现在在两两方方面面,一一方方面面是是建建立立了了实实数数系系,另一方面是创造了精确的另一方面是创造了精确的“”语言。语言。33柯西的贡献柯西的贡献柯柯西西(A.L.Cauchy,1789-A.L.Cauchy,1789-18571857),),法国数学家,法国数学家,在数学分析和置换群在数学分析和置换群理论方面做了开拓性理论方面做了开拓性的工作,是最伟大的的工作,是最伟大的近代数学家之一。他近代数学家之一。他在在1821-18231821-1823年出版年出版的的分析教程分析教程和和无穷小计算讲义无穷小计算讲义是数学史主划时代的是数学史主划时代的著作。著作。34魏尔斯特拉斯的规划魏尔斯特拉斯的规划魏尔斯特拉斯魏尔斯特拉斯提出一个规划:提出一个规划:1)1)逻辑地构造实数系;逻辑地构造实数系;2)2)从实数系出发去定义极限概念、从实数系出发去定义极限概念、连续性、可微性、收敛和发散。连续性、可微性、收敛和发散。这一规划被称为这一规划被称为分析的算术化分析的算术化。35魏尔斯特拉斯的规划魏尔斯特拉斯的规划魏尔斯特拉斯魏尔斯特拉斯规划成功的影响:规划成功的影响:q既然分析能从实数系导出,所以,如果实既然分析能从实数系导出,所以,如果实数系是相容的,那么全部分析是相容的。数系是相容的,那么全部分析是相容的。q欧氏几何通过笛卡尔坐标系也能奠基于实欧氏几何通过笛卡尔坐标系也能奠基于实数系上。所以,如果实数系是相容的,那么数系上。所以,如果实数系是相容的,那么欧氏几何也是相容的,几何学的其它分支也欧氏几何也是相容的,几何学的其它分支也是相容的。是相容的。q实数系可用来解释代数的许多分支,所以实数系可用来解释代数的许多分支,所以许多代数的相容性也依赖于实数系的相容性。许多代数的相容性也依赖于实数系的相容性。36魏尔斯特拉斯的规划魏尔斯特拉斯的规划总之,第二次数学危机的核心是微积总之,第二次数学危机的核心是微积分的基础不稳固。分的基础不稳固。柯西的贡献在于将微积分建立在极限柯西的贡献在于将微积分建立在极限论的基础上,遗留的问题是,任何实论的基础上,遗留的问题是,任何实数列的极限存在吗?数列的极限存在吗?魏尔斯特拉斯的贡献在于,先逻辑地魏尔斯特拉斯的贡献在于,先逻辑地构造实数系,因而建立分析基础的逻构造实数系,因而建立分析基础的逻辑顺序是实数系辑顺序是实数系极限论极限论微积分。微积分。37从有理数谈起从有理数谈起有理数系是稠密的,并且四则运算封有理数系是稠密的,并且四则运算封闭,是我们遇到的第一个比较完美的闭,是我们遇到的第一个比较完美的数系。但它仍存在严重的缺陷。数系。但它仍存在严重的缺陷。q从几何角度,有理数没有填满整个数从几何角度,有理数没有填满整个数轴。轴。q从代数角度,有理数系对开方运算不从代数角度,有理数系对开方运算不封闭。封闭。q从变量角度考虑,有理数在极限运算从变量角度考虑,有理数在极限运算下不封闭。下不封闭。38从有理数谈起从有理数谈起39戴德金分割戴德金分割戴德金关于分划的定义:q定义 把全体有理数的集合分成两个集合A和A,满足下面三个条件:v集合A和A都是非空的(不空);v每一个有理数在而且只在A与A两个集合的一个之中(不漏);v集合A中的每一个数a都小于集合A中的每一个数a(不乱)40戴德金分割戴德金分割q命题命题 不存在不存在Q Q的这样的分划的这样的分划A|AA|A,使使A A中有最大数,中有最大数,A A中有最小数。中有最小数。分划有三种类型:分划有三种类型:1)1)在上类中没有最小数,而在下类中有最在上类中没有最小数,而在下类中有最大数大数r r;2)2)在上类中有最小数在上类中有最小数r,r,而在下类中没有最大而在下类中没有最大数;数;3)3)在上类中没有最小数,在下类中也没有在上类中没有最小数,在下类中也没有最大数。最大数。41戴德金分割戴德金分割q定义定义任何属于类型任何属于类型3 3)的分划定义)的分划定义了一个无理数了一个无理数a.a.对于每个有理数对于每个有理数r r,存在两个定义它的分存在两个定义它的分划,定义其归入上类,则下类划,定义其归入上类,则下类A A中没最大中没最大数。数。42实数的性质实数的性质实数有三种基本性质:实数有三种基本性质:q实数的有序性实数的有序性q实数的连续性实数的连续性q实数的代数结构实数的代数结构43实数集合的有序化实数集合的有序化v定义定义由分划由分划A|AA|A和和B|BB|B分别定义分别定义的两个实数的两个实数 ,当且仅当这两个分划当且仅当这两个分划相同时才相等。相同时才相等。v定义定义若若A A类完全包含类完全包含B B类,且不与类,且不与B B类相同,则称类相同,则称 或或v定理定理1 1任何两个实数和之间必有下列任何两个实数和之间必有下列三种关系之一:三种关系之一:44实数集合的有序化实数集合的有序化v引理引理1 1设设 是两个任意的实数。若是两个任意的实数。若 v 则总可以找到有理数则总可以找到有理数r r,使之介使之介于于 之间:之间:v引理引理2 2设设 是两个给定的实数,是两个给定的实数,如果对无论怎样小的有理数如果对无论怎样小的有理数e0e0,总能使总能使 夹在两个同样的有理数中间:夹在两个同样的有理数中间:45实数集合的连续性实数集合的连续性v定理定理2 2(戴德金)(戴德金)对实数集合的任何对实数集合的任何分划分划A|AA|A,都存在产生这个分划的实数都存在产生这个分划的实数a a,这个数,这个数 或者是下类或者是下类A A中的最大数,或者中的最大数,或者是上类是上类A A中的最小数。中的最小数。这个定理是实数理论的第一个重要定理,这个定理是实数理论的第一个重要定理,又称为戴德金基本定理。又称为戴德金基本定理。46确界存在定理确界存在定理几个基本概念:几个基本概念:设设E E是一个实数集合,如果存在数是一个实数集合,如果存在数M M,使得对所有的使得对所有的 都有都有 我们就说集合我们就说集合E E是是有界集有界集如果如果E E不满足上述条件,即对任意的正不满足上述条件,即对任意的正数数M M,不管它多大,总有不管它多大,总有 ,使得,使得 ,我们就称,我们就称E E为为无界集无界集47确界存在定理确界存在定理几个基本概念:几个基本概念:对于集合对于集合E E来说,如果存在数来说,如果存在数K K(或(或k k),),使得对所有数使得对所有数 都有都有 ,我们就称集合,我们就称集合E E有有上界上界(或者有(或者有下界下界)。)。数数K(K(或或k)k)称为集合称为集合E E的一个上界(或下界)。的一个上界(或下界)。48确界存在定理确界存在定理几个基本概念:几个基本概念:49确界存在定理确界存在定理v定理定理3 3如果如果H=xH=x是有上(下)界的集是有上(下)界的集合,则它一定有上(下)确界。合,则它一定有上(下)确界。证明略证明略50根的存在性根的存在性v单调序列必有极限单调序列必有极限v区间套定理区间套定理:一定能套住一个点一定能套住一个点v从任何有界的序列中总能选出收敛于有限极限的子序从任何有界的序列中总能选出收敛于有限极限的子序列列.v v (柯西准则)(柯西准则)51 “”语言的成功,表现在:语言的成功,表现在:这这 一一 语语 言言 给给 出出 极极 限限 的的 准准 确确 描描 述述,消消 除除了了 历历 史史 上上 各各 种种 模模 糊糊 的的 用用 语语,诸诸 如如“最最 终终比比”、“无限地趋近于无限地趋近于”,等等。,等等。这这 样样 一一 来来,分分 析析 中中 的的 所所 有有 基基 本本 概概 念念 都都可可 以以 通通 过过 实实 数数 和和 它它 们们 的的 基基 本本 运运 算算 和和 关关 系系 精精确地表述出来。确地表述出来。52 4)极限的)极限的“”定义及定义及“贝克莱贝克莱悖悖论论”的消除的消除 极限的极限的“”定义定义53 定义:设函数定义:设函数 在在 的附近都有定的附近都有定义,如果有一个确定的实数义,如果有一个确定的实数 (无论多无论多么小的正数么小的正数 )。)。都都 (都能找到一个正数都能找到一个正数 ,依赖,依赖于于 ),使当),使当 时(时(满足不等式满足不等式 的所有不等于的所有不等于 的的 ),有),有 (这些这些 对应的函数值对应的函数值与与 的差小于预先给定的任意小的的差小于预先给定的任意小的 )我们就)我们就说说“函数函数 在在 趋近于趋近于 时,有极限时,有极限 ”。记为记为 。54 由由极极限限的的这这个个“”定定义义,可可以以求求出出一一些些基基本本的的极极限限,并并严严格格地地建建立立一一整整套套丰富的极限理论。简单说,例如有丰富的极限理论。简单说,例如有 两两个个相相等等的的函函数数,取取极极限限后后仍仍相相等等;两两个个函函数数,和和的的极极限限等等于于极极限限的的和和。等等。等等。由此再建立严格的微积分理论。由此再建立严格的微积分理论。55 “贝克莱悖论贝克莱悖论”的消除的消除 回到牛顿的(回到牛顿的(*)式上:)式上:(*)这是在这是在 (即(即 )条件下,得到的等式;)条件下,得到的等式;它表明它表明 时间内物体的平均速度为时间内物体的平均速度为 。(*)式等号两边都是的函数。然后,我们把物体在)式等号两边都是的函数。然后,我们把物体在 时刻的瞬时速度定义为:上述平均速度当时刻的瞬时速度定义为:上述平均速度当 趋于趋于0时的极限,即时的极限,即 物体在物体在 时刻的瞬时速度时刻的瞬时速度=。56 下边我们对(下边我们对(*)式的等号两边同时取)式的等号两边同时取极限极限 ,根据,根据“两个相等的函数取两个相等的函数取极极限后仍相等限后仍相等”,得,得 瞬时速度瞬时速度=再根据再根据“两个函数和的极限等于极限的两个函数和的极限等于极限的和和”,得,得然后再求极限得然后再求极限得 57 上述过程所得结论与牛顿原先的结论上述过程所得结论与牛顿原先的结论是一样的,但每一步都有了严格的逻辑基是一样的,但每一步都有了严格的逻辑基础。础。“贝克莱悖论贝克莱悖论”的焦点的焦点“无穷小量无穷小量 是是不是不是0?”,在这里给出了明确的回答:,在这里给出了明确的回答:。这里也没有这里也没有“最终比最终比”或或“无限趋近无限趋近于于”那样含糊不清的说法。那样含糊不清的说法。58 总之,第二次数学危机的核心是微积分的基础总之,第二次数学危机的核心是微积分的基础不稳固。柯西的贡献在于,将微积分建立在极限论不稳固。柯西的贡献在于,将微积分建立在极限论的基础。魏尔斯特拉斯的贡献在于,逻辑地构造了的基础。魏尔斯特拉斯的贡献在于,逻辑地构造了实数系,建立了严格的实数理论,使之成为极限理实数系,建立了严格的实数理论,使之成为极限理论的基础。所以,论的基础。所以,建立数学分析(或者说微积分)建立数学分析(或者说微积分)基础的基础的“逻辑顺序逻辑顺序”是:是:实数理论实数理论极限理论极限理论微积分。微积分。而而“历史顺序历史顺序”则正好相反。则正好相反。59知识的知识的逻辑顺序逻辑顺序与与历史顺序历史顺序有时是有时是不同不同的的.60 三、第三次数学危机三、第三次数学危机 1“数学基础数学基础”的曙光的曙光集合论集合论 到到19世纪,数学从各方面走向成熟。非欧几何世纪,数学从各方面走向成熟。非欧几何的出现使几何理论更加扩展和完善;实数理论(和的出现使几何理论更加扩展和完善;实数理论(和极限理论)的出现使微积分有了牢靠的基础;群的极限理论)的出现使微积分有了牢靠的基础;群的理论、算术公理的出现使算术、代数的逻辑基础更理论、算术公理的出现使算术、代数的逻辑基础更为明晰,等等。人们水到渠成地思索:整个数学的为明晰,等等。人们水到渠成地思索:整个数学的基础在哪里?正在这时,基础在哪里?正在这时,19世纪末,集合论出现了。世纪末,集合论出现了。人们感觉到,集合论有可能成为整个数学的基础。人们感觉到,集合论有可能成为整个数学的基础。61 其理由是:算术以整数、分数等为对象,微积分其理由是:算术以整数、分数等为对象,微积分以变数、函数为对象,几何以点、线、面及其组成以变数、函数为对象,几何以点、线、面及其组成的图形为对象。同时,用集合论的语言,算术的对的图形为对象。同时,用集合论的语言,算术的对象可说成是象可说成是“以整数、分数等组成的以整数、分数等组成的集合集合”;微积;微积分的对象可说成是分的对象可说成是“以函数等组成的以函数等组成的集合集合”;几何;几何的对象可说成是的对象可说成是“以点、线、面等组成的以点、线、面等组成的集合集合”。这样一来,这样一来,都是以集合为对象都是以集合为对象了。了。集合成了更基本集合成了更基本的概念。的概念。62 于是,集合论似乎给数学家带来了曙光:于是,集合论似乎给数学家带来了曙光:可能会一劳永逸地摆脱可能会一劳永逸地摆脱“数学基础数学基础”的危机。的危机。尽管集合论自身的相容性尚未证明,但许多尽管集合论自身的相容性尚未证明,但许多人认为这只是时间问题。庞加莱甚至在人认为这只是时间问题。庞加莱甚至在1900年巴黎国际数学家大会上宣称:年巴黎国际数学家大会上宣称:“现在现在 我们可以说,完全的严格性已经达到了!我们可以说,完全的严格性已经达到了!”63 2算术的集合论基础算术的集合论基础 1)人人们们按按下下列列逻逻辑辑顺顺序序把把全全部部数数学学的的基基础础归归结结为为算算术术,即即归归结结为为非非负负整整数数,即即自自然然数数集集合合加加上上0现现在在我我国国中中小小学学就就把把这这一一集集合合称为自然数集合。称为自然数集合。(算术)非负整数(算术)非负整数n有理数有理数 实数实数 复数复数 图形图形64 因此,全部数学似乎都可归结为非负整数了,因此,全部数学似乎都可归结为非负整数了,或者说,或者说,全部数学都可以归结为算术了。全部数学都可以归结为算术了。这样,如果能把算术建立在集合论的基础上,这样,如果能把算术建立在集合论的基础上,就相当于解决了整个就相当于解决了整个“数学基础数学基础”的问题。的问题。法国数学家、数理逻辑先驱法国数学家、数理逻辑先驱弗雷格弗雷格(G.Frege,18481925)就做了这样的工作。他写就做了这样的工作。他写了一本名叫了一本名叫算术基础算术基础的书。的书。65弗雷格弗雷格算术基础算术基础66 2)弗雷格的弗雷格的算术基础算术基础 为了使算术建立在集合论的基础上,所为了使算术建立在集合论的基础上,所有的非负整数,都需要用集合论的观点和语有的非负整数,都需要用集合论的观点和语言重新定义。言重新定义。首先从首先从0说起。说起。0是什么?是什么?应当先回答应当先回答0是什么,然后才有表示是什么,然后才有表示“0”的符号。的符号。67 为为此此,先先定定义义“空空集集”。空空集集是是“不不含含元元素素的的集集合合”。例例如如,“方方程程 在在实实数数集集中中的的根根的的集集合合”就就是是一一个个空空集集,再再例例如如“由由最最大大的的正正整整数数组组成成的的集集合合”也也是是一一个个空集。空集。68 所有的空集放在一起,作成一个集合的所有的空集放在一起,作成一个集合的集合集合,(为说话简单我们把,(为说话简单我们把“集合的集合集合的集合”称作类),这个类,就可以给它一个符号:称作类),这个类,就可以给它一个符号:0,中国人念,中国人念“ling”,英国人念英国人念“Zero”。空集是空的,但由所有空集组成的类,它空集是空的,但由所有空集组成的类,它本身却是一个元素了,即,本身却是一个元素了,即,0是一个元素了。是一个元素了。由它再作成一个集合由它再作成一个集合0,则不是空集了。,则不是空集了。69 弗雷格再定义两个集合间的弗雷格再定义两个集合间的双射双射:既是满射又是:既是满射又是单射的映射叫作双射,也称单射的映射叫作双射,也称可逆映射可逆映射;通俗地说,;通俗地说,就是存在逆映射的映射。它可以在两个集合间来回就是存在逆映射的映射。它可以在两个集合间来回地映射,所以一般称为地映射,所以一般称为“双射双射”。弗雷格再定义弗雷格再定义两个集合的两个集合的“等价等价”:,能够在其间建立双射的两个集合能够在其间建立双射的两个集合A、B称为称为“等价等价”。70 下边可以定义下边可以定义“1”了。把了。把与集合与集合0等价等价的所有集合放在一起,作成一个集合的集合。的所有集合放在一起,作成一个集合的集合。这个类,就可以给它一个符号:这个类,就可以给它一个符号:1。再定义再定义“2”。把。把与集合与集合0,1等价的所等价的所有集合放在一起,作成一个集合的集合。这有集合放在一起,作成一个集合的集合。这个类,就叫:个类,就叫:2。然后,把然后,把与与0,1,2等价的集合作成的等价的集合作成的类,叫:类,叫:3。71 一一般般地地,在在有有了了0,1,2,n的的定定义义后后,就就把把所所有有与与 集集 合合0,1,2,n 等等 价价 的的 集集 合合 放放 在在 一一 起起,作作 成成 集集 合合 的的 集集合,这样的类,定义为:合,这样的类,定义为:n+1。这这种种定定义义概概念念的的方方法法,叫叫作作“归归 纳纳 定定义义”的方法。的方法。72 这这样样,弗弗雷雷格格就就从从空空集集出出发发,而而仅仅仅仅用用到到集集合合及及集集合合等等价价的的概概念念,把把全全部部非非负负整整数数定定义义出出来来了了。于于是是根根据据上上边边说说的的“可可以以把把全全部部数数学学归归结结为为非非负负整整数数”,就就可可以以说说,全全部部数数学学可可以以建建立立在在集集合合论论的的基基础础上上了。了。73 3 罗素的罗素的“集合论悖论集合论悖论”引发危机引发危机 1)悖论引起震憾和危机悖论引起震憾和危机 正正 当当 弗弗 雷雷 格格 即即 将将 出出 版版 他他 的的 算算 术术 基基础础一一书书的的时时候候,罗罗素素的的集集合合论论悖悖论论出出来来了了。这这也也是是庞庞加加莱莱宣宣布布“完完全全严严格格的的数数学学已已经经建建立立起起来来!”之之后后刚刚刚刚两两年年,即即1902年。年。74 伯特兰伯特兰罗素(罗素(1872-1970)Russell,Bertrand Arthur William(Third Earl Russell)出生年月:1872-1970 国籍:英国学科成就:学科成就:英国著名哲学家、数学家、逻辑学家,分析学的主要创始人,世界和平运动的倡导者和组织者。所获奖项:1950年诺贝尔文学奖。罗素罗素75 集合论中居然有逻辑上的矛盾!集合论中居然有逻辑上的矛盾!倾倾 刻刻 之之 间间,算算 术术 的的 基基 础础 动动 摇摇 了了,整整 个个数数 学学 的的 基基 础础 似似 乎乎 也也 动动 摇摇 了了。这这 一一 动动 摇摇 所所 带带来来 的的 震震 憾憾 是是 空空 前前 的的。许许 多多 原原 先先 为为 集集 合合 论论 兴兴高高 采采 烈烈 的的 数数 学学 家家 发发 出出 哀哀 叹叹:我我 们们 的的 数数 学学 就就是建立在这样的基础上的吗?是建立在这样的基础上的吗?罗罗 素素 悖悖 论论 引引 发发 的的 危危 机机,就就 称称 为为 第第 三三 次次数学危机。数学危机。76 罗罗 素素 把把 他他 发发 现现 的的 悖悖 论论 写写 信信 告告 诉诉 弗弗 雷雷格格。弗弗雷雷格格在在他他的的算算术术基基础础一一书书的的末末尾尾无无可可奈奈何何地地写写道道:“一一个个科科学学家家遇遇到到的的最最 不不 愉愉 快快 的的 事事 莫莫 过过 于于,当当 他他 的的 工工 作作 完完 成成时时,基基础础崩崩塌塌了了。当当本本书书即即将将印印刷刷时时,罗罗素素先先生生的的一一封封信信就就使使我我陷陷入入这这样样的的尴尴尬尬境境地。地。”77 2)罗素悖论罗素悖论 在在叙叙述述罗罗素素悖悖论论之之前前,我我们们先先注注意意到到下下边边的的事事实实:一一个个集集合合或或者者是是它它本本身身的的成成员员(元元 素素),或或者者不不是是它它本本身身的的成成员员(元元 素素