成都市小学数学六年级下册第五单元数学广角(鸽巢问题)检测题(含答案解析).pdf
-
资源ID:83421219
资源大小:77.11KB
全文页数:9页
- 资源格式: PDF
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
成都市小学数学六年级下册第五单元数学广角(鸽巢问题)检测题(含答案解析).pdf
成都市小学数学六年级下册第五单元数学广角(鸽巢问题)检测题(含答案解析)一、选择题1某小学有6 个年级,每个年级有8 个班。一天放学,8 位小朋友一起走出校门。那么,下列说法中,正确的是()。A.他们中至少有2 人出生月份相同 B.他们中至少有2 人是同一年级的C.他们中至少有2 人生肖属相相同 D.他们中至少有2 人是同一班级的2把 25 枚棋子放入下图的三角形内,那么一定有一个小三角形中至少放入()枚。A.9 B.8 C.7 D.63启航学校的学生中,最大的12 岁,最小的6 岁,最多从中挑选()名学生,就一定能找到年龄相同的两名同学。A.8 B.13 C.74口袋里有红、黄、蓝三种颜色的小球各3 个,一次至少取出()个,才能保证取出的小球一定有3 个球的颜色相同。A.3 B.5 C.7 D.95把 25 枚棋子放入下图的三角形内,那么一定有一个小三角形中至少放入()枚。A.9 B.8 C.7 D.66六(1)班有 42 名学生,男、女生人数比为1:1,至少任意选取()人,才能保证男、女生都有。A.3 B.2 C.10 D.227把 4 个小球放在3 个口袋里,至少有一个口袋里装了()个小球。A.2 B.3 C.48李叔叔要给房间的四面墙壁涂上不同的颜色,但结果是至少有两面的颜色是一致的,颜料的颜色种数是()种A.2 B.3 C.4 D.59王东玩掷骰子游戏,要保证掷出的骰子总数至少有两次相同,他最少应掷()次A.5 B.6 C.7 D.810把()种颜色的球各8 个放在一个盒子里,至少取出4 个球,可以保证取到两个颜色相同的球A.1 B.2 C.3 D.411王老师把 36 根跳绳分给5 个班,至少有()根跳绳分给同一个班A.7 B.8 C.912有红、黄、蓝、绿四种颜色的球各10 个,至少从中取出()个球保证有3 个同色。A.3 B.5 C.9 D.13二、填空题13在每个格子中任意画上符号“”和“”,则下面9 列中,至少有 _列的符号是完全一样的。14 李叔叔要给房间的四壁涂上不同的颜色,可不管怎么涂,总有两面墙壁的颜色是一致的。李叔叔的颜料最多有_种颜色。15有黄、红两种颜色的球各4 个,放到同一个盒子里,至少取_个球可以保证取到 2 个颜色相同的球。16有红、黄、蓝3 种颜色的球各5 个,放在同一个盒子里,至少取出_个,可以保证取到 2 个颜色相同的球。17 把 4 个苹果放在3 个盘子里,总有一个盘子里至少有_个苹果。18一副扑克牌有四种花色(大、小王除外),每种花色各有13 张,现在从中任意抽牌,至少抽 _张牌,才能保证有5 张牌是同一种花色的。19箱子里有红、白、黄三种颜色的小球各10 个,至少摸出_个小球才能保证有3个小球的颜色是相同的。20一个盒子里有大小相同的红球和黄球各3 个,只要摸出_个球,就能保证一定有 2 个球是同色的。三、解答题21储蓄罐里有同样大小的金币和铜币各5 枚。要想摸出的钱币中一定有3 枚相同,最少要摸出几枚钱币?22 学校图书馆有历史、文艺、科学三种图书,每个学生从中任意借两本,那么至少要几个学生才能保证一定有两人所借的图书属于同一种?23要把61 个乒乓球分装在若干个乒乓球盒中,每个盒子最多可以装5 个乒乓球,问:至少有多少个盒子中的乒乓球数目相同?24从 1,2,3,99,100 这 100 个数中任意选出51 个数证明:(1)在这 51 个数中,一定有两个数互质;(2)在这 51 个数中,一定有两个数的差等于50;(3)在这 51 个数中,一定存在9 个数,它们的最大公约数大于125 如图,能否在行列的方格表的每一个空格中分别填上,这三个数,使得各行各列及对角线上个数的和互不相同?并说明理由26从扑克牌中取出两张王牌,在剩下的52 张中任意取牌。(1)至少取多少张牌,保证有2 张牌的点数相同?(2)至少取多少张牌,保证有2 张牌的点数不同?(3)至少取多少张牌,保证有2 张红桃?【参考答案】*试卷处理标记,请不要删除一、选择题1B 解析:B 【解析】【解答】86=1(年级).2(人);1+1=2(人)。故答案为:B。【分析】8 位小朋友6 个年级,考虑最不利原则,6 个小朋友每人一个年级,余下的2 个小朋友,不管是哪个年级的,他们中至少有2 人是同一年级的。2C 解析:C 【解析】【解答】254=6(个).1(个);6+1=7(个);一定有一个小三角形中至少放入7 枚。故答案为:C。【分析】把4 个小三角形看作4 个抽屉,每个抽屉需要放6 枚,剩下的1 枚不论怎么放,总有一个抽屉里至少有7 枚,所以,有一个小三角形内至少有7 枚棋子,据此解答。3A 解析:A 【解析】【解答】7+1=8(名)。故答案为:A。【分析】6、7、8、9、10、11、12,一共 7 个年龄段,在从中挑选1 名学生,就一定能找到年龄相同的两名同学。4C 解析:C 【解析】【解答】解:32+1=7(个)故答案为:C。【分析】假设取出的前6 个球分别是2 个红球,2 个黄球,2 个蓝球,那么再取出1 个无论是什么颜色都能保证取出的小球一定有3 个球的颜色相同。5C 解析:C 【解析】【解答】解:254=6(枚)1(枚),6+1=7(枚),所以一定有一个小三角形中至少放入7 枚。故答案为:C。【分析】这是抽屉原理的题,将奇数个的物体放在几个容器中,求一定有一个容器中至少放入的个数,就用这个物体的个数 容器的个数,那么一个容器中至少放入的个数就是把商加上 1 即可。6D 解析:D 【解析】【解答】422=21(人),至少选取:21+1=22(人),才能保证男、女生都有.故答案为:D.【分析】根据条件“男、女生人数比为1:1”可知,男、女生人数相等,用总人数 2=男生人数(或女生人数),假设先选取一半的人数,可能全是一种性别的,那么再多选取1人,就能保证男、女生都有,据此解答.7A 解析:A 【解析】【解答】43=1(个)1(个),至少:1+1=2(个).故答案为:A.【分析】抽屉原理的公式:a 个物体放入n 个抽屉,如果an=bc,那么有一个抽屉至少放(b+1)个物体,据此列式解答.8B 解析:B 【解析】【解答】解:4 1=3(种);故答案应选:B【分析】本题可以用抽屉原理的最不利原则;故意在3 个墙面上涂上甲、乙、丙3 种颜色,没有重复,但第4 面墙只能选甲、乙、丙中的一种,至少有两面的颜色是一致的;所以得出颜料的种数是3 种9C 解析:C 【解析】【解答】解:6+1=7(次);故答案为:C【分析】骰子能掷出的结果只有6 种,掷 7 次的话必有2 次相同;即把骰子的出现的六种情况看作“抽屉”,把掷出的次数看作“物体的个数”,要保证至少有两次相同,那么物体个数应比抽屉数至少多1;进行解答即可10C 解析:C 【解析】【解答】解:由于至少取出4 个球,可以保证取到两个颜色相同的球所以,盒子应有41=3 种不同颜色的球,最差情况是,拿出三个球是不同的三种颜色,则只要再拿出一个球,就能保证保证取到两个颜色相同的球故选:C【分析】根据题意义可知,至少取出4 个球,可以保证取到两个颜色相同的球根据抽屉原理可知,盒子应有3 种不同颜色的球,即最差情况是,拿出三个球是不同的三种颜色,则只要再拿出一个球,就能保证保证取到两个颜色相同的球11B 解析:B 【解析】【解答】解:365=7(根)1(根)7+1=8(根)答:至少有8 根跳绳分给同一个班故选:B【分析】把5 个班看作5 个抽屉,把36 根跳绳看作36 个元素,从最不利情况考虑,每个抽屉先放7 根,共需要35 根,余这一根跳绳无论放在那个抽屉里,总有一个抽屉里的有7+1=8(根),据此解答12C 解析:C 【解析】【解答】解:42+1=8+1=9(个)答:至少从中取出9 个球保证有3 个同色故选:C【分析】由题意可知,红、黄、蓝、绿四种颜色的球,要保证取出的球有3 个颜色相同,最坏的情况是每种颜色各取出2 个,即取出42=8 个,此时只要再任取一个,即取出4 2+1=9 个就能保证有3 个同色二、填空题13【解析】【解答】94=2(轮)1(列);2+1=3(列)故答案为:3【分析】因为每列的填写的只能是下列4 种之一:一共有 9 列考虑最差的情况先把4 种不同的方法填写2 遍最后还剩下 1 列这一解析:【解析】【解答】94=2(轮).1(列);2+1=3(列)。故答案为:3。【分析】因为每列的填写的只能是下列4 种之一:、,一共有9 列,考虑最差的情况,先把4 种不同的方法填写2 遍,最后还剩下1 列,这一列无论是哪种方法,都会使得有3 列的符号是完全一样的。14【解析】【解答】在3 个墙面上涂上甲乙丙3 种颜色没有重复但第4 面墙只能选甲乙丙中的一种至1 少有两面的颜色是一致的;所以得出颜料的种数是3 种故答案为:3【分析】本题可以用抽屉原理的最不利原则考虑解析:【解析】【解答】在3 个墙面上涂上甲、乙、丙3 种颜色,没有重复,但第4 面墙只能选甲、乙、丙中的一种,至1 少有两面的颜色是一致的;所以得出颜料的种数是3种。故答案为:3.【分析】本题可以用抽屉原理的最不利原则考虑。15【解析】【解答】解:有红黄两种颜色的球个4 个放到同一个盒子里至少取 3 个球可以保证取到2 个颜色相同的球故答案为:3【分析】从最坏的情况考虑假设先摸出的两个球一个黄色一个红色那么再摸出一个无论是什么颜色解析:【解析】【解答】解:有红黄两种颜色的球个4 个,放到同一个盒子里,至少取3个球可以保证取到2 个颜色相同的球。故答案为:3。【分析】从最坏的情况考虑,假设先摸出的两个球一个黄色,一个红色,那么再摸出一个无论是什么颜色都能保证取出2 个颜色相同的球。16【解析】【解答】3+1=4(个)所以至少取出4 个可以保证取到 2 个颜色相同的球故答案为:4【分析】要保证取到2 个颜色相同的球则 3 种颜色的球各取1 个再取 1 个时可满足条件解析:【解析】【解答】3+1=4(个),所以至少取出4 个,可以保证取到2 个颜色相同的球。故答案为:4。【分析】要保证取到2 个颜色相同的球,则3 种颜色的球各取1 个,再取1 个时可满足条件。17【解析】【解答】43=1(个)1(个)至少:1+1=2(个)故答案为:2【分析】抽屉原理的公式:a 个物体放入n 个抽屉如果an=bc那么有一个抽屉至少放(b+1)个物体据此解答解析:【解析】【解答】43=1(个)1(个),至少:1+1=2(个).故答案为:2.【分析】抽屉原理的公式:a 个物体放入n 个抽屉,如果a n=bc,那么有一个抽屉至少放(b+1)个物体,据此解答.18【解析】【解答】44+1=16+1=17(张)故答案为:17【分析】此题主要考查了抽屉原理的应用考虑最差情况:假设每种花色的牌抽出4 张四种花色一共是 44=16 张再抽一张一定会是四种花色中的某一种解析:【解析】【解答】44+1=16+1=17(张)故答案为:17.【分析】此题主要考查了抽屉原理的应用,考虑最差情况:假设每种花色的牌抽出4 张,四种花色一共是44=16张,再抽一张,一定会是四种花色中的某一种,这样就会有5 张牌是同一种花色的,据此解答.19【解析】【解答】(3-1)3+1=7(个)故答案为:7【分析】最坏的情况是前 6 个摸出的小球3 种颜色各 2 个再摸出一个无论什么颜色都有可能有3 个小球颜色相同解析:【解析】【解答】(3-1)3+1=7(个)故答案为:7.【分析】最坏的情况是前6 个摸出的小球,3 种颜色各2 个,再摸出一个,无论什么颜色都有可能有3 个小球颜色相同。20【解析】【解答】解:2+1=3(个)只要摸出 3 个球就能保证一定有2 个球是同色的故答案为:3【分析】因为有 2 种颜色假如前两个各摸出1 个球那么第三个无论是什么颜色的球都能保证一定有2 个球同色解析:【解析】【解答】解:2+1=3(个),只要摸出3 个球,就能保证一定有2 个球是同色的.故答案为:3【分析】因为有2 种颜色,假如前两个各摸出1 个球,那么第三个无论是什么颜色的球都能保证一定有2 个球同色.三、解答题21 解:2 2+1=5(枚)答;最少要摸出5 枚钱币。【解析】【分析】考虑最不利原则,前4 次摸到金币和铜币各2 枚,第 5 次不管摸到哪种钱币,都能保证摸出的钱币中一定有3 枚相同。22 6+1=7(个)答:至少要7 个学生才能保证一定有两人所借的图书属于同一种.【解析】【分析】三种图书,从中任意借两本的借法有:两本历史、两本文艺、两本科学、一本历史一本文艺、一本历史一本科学、一本文艺一本科学,一共有6 种借法,第七个学生不管怎么借,都是这六种中的一种,所以至少要7 个学生才能保证一定有两人所借的图书属于同一种.23 解:每个盒子不超过5 个球,最“坏”的情况是每个盒子的球数尽量不相同,为1、2、3、4、5 这 5 种各不相同的个数,共有:,最不利的分法是:装1、2、3、4、5 个球的各4 个,还剩1 个球,要使每个盒子不超过5个球,无论放入哪个盒子,都会使至少有5 个盒子的球数相同【解析】【分析】每个盒子不超过5 个球,那么盒子里可以放1、2、3、4、5,一种五种球,这些球一共有15 个,然后用球的总个数除以15,如果有余数,那么球数相同的盒数至少有的个数就是将所得的商加1 即可;如果没有余数,那么球数相同至少有的个数就是所得的商。24(1)解:我们将1100 分成(1,2),(3,4),(5,6),(7,8),(99,100)这 50 组,每组内的数相邻而相邻的两个自然数互质将这50 组数作为50个抽屉,同一个抽屉内的两个数互质而现在51 个数,放进50 个抽屉,则必定有两个数在同一抽屉,于是这两个数互质问题得证(2)解:我们将1100 分成(1,51),(2,52),(3,53),(40,90),(50,100)这 50 组,每组内的数相差50将这 50 组数视为抽屉,则现在有51 个数放进50 个抽屉内,则必定有2 个数在同一抽屉,那么这两个数的差为50问题得证(3)解:我们将1100 按 2 的倍数、3 的奇数倍、既不是2 又不是3 的倍数的情况分组,有(2,4,6,8,98,100),(3,9,15,21,27,93,99),(5,7,11,13,17,19,23,95,97)这三组第一、二、三组分别有50、17、33 个元素最不利的情况下,51 个数中有33 个元素在第三组,那么剩下的18 个数分到第一、二两组内,那么至少有9 个数在同一组所以这9 个数的最大公约数为2 或 3 或它们的倍数,显然大于 1问题得证【解析】【分析】(1)相邻的两个自然数互质,可以把这些数按顺序两两为一组,进行分类即可;(2)只需要将一组中的两个数作差是50,这样的数可以组50 组,那么在这51 个数中,一定有两个数的差等于50;(3)因为要选出9 个数,所以把这100 个数分组后,每组至少有9 个数字,我们可以按2 的倍数,3 的奇数倍,既不是2 的倍数又不是3 的倍数进行分组,先用50 减去既不是2的倍数又不是3 的倍数的数的个数,还剩18 个数,故至少有9 个数在前两组中的一组,得证。25 解:从问题入手:因为问的是和,所以就从和的种类入手。由,组成的和中最小为,最大的为,中共有种结果,而行列加上对角线共有个和,根据抽屉原理,必有两和是相同的,所以此题不能满足要求【解析】【分析】因为用到的是这三个数的和,所以8 个数字的和最小是8,最大是24,从 8 到 24 一共有 17 个数字,根据抽屉原理,不能满足要求。26(1)解:13114(张)答:至少取14 张牌,保证有2 张牌的点数相同。(2)解:415(张)答:至少取5 张牌,保证有2 张牌的点数不同。(3)解:133 241(张)答:至少取41 张牌,保证有2 张红桃。【解析】【分析】(1)一副扑克牌54 张,从扑克牌中取出两张王牌,剩下的52 张牌分四种花色,每种花色的有524=13张,如果要保证有2 张牌的点数相同,只需要比一种花色的总张数多1 张就可以,据此解答;(2)同一种点数的扑克牌有4 种花色,一共是4 张,多取1 张,一定会出现不同点数的牌,据此解答;(3)一副扑克牌54 张,从扑克牌中取出两张王牌,剩下的52 张牌分四种花色,每种花色的有524=13张,要求保证有2 张红桃,考虑最差情况:先将其他三种颜色的牌取完,一共要取 133=39张,然后再取2 张,一定是红桃,据此解答.