高考数学基础知识总结:第14章导数.pdf
高中数学第十四章导 数考试内容:导数的背影导数的概念多项式函数的导数利用导数研究函数的单调性和极值函数的最大值和最小值考试要求:(1)了解导数概念的某些实际背景(2)理解导数的几何意义(3)掌握函数,y=c(c 为常数)、y=xn(nN+)的导数公式,会求多项式函数的导数(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值(5)会利用导数求某些简单实际问题的最大值和最小值14.导 数知识要点1.导数(导函数的简称)的定义:设0 x是函数)(xfy定义域的一点,如果自变量x 在0 x处有 增 量x,则 函 数 值y 也 引 起 相 应 的 增 量)()(00 xfxxfy;比 值xxfxxfxy)()(00称为函数)(xfy在点0 x到xx0之间的平均变化率;如果极限导数导数的概念导数的运算导数的应用导数的几何意义、物理意义函数的单调性函数的极值函数的最值常见函数的导数导数的运算法则xxfxxfxyxx)()(limlim0000存在,则称函数)(xfy在点0 x处可导,并把这个极限叫做)(xfy在0 x处的导数,记作)(0 xf或0|xxy,即)(0 xf=xxfxxfxyxx)()(limlim0000.注:x是增量,我们也称为“改变量”,因为x 可正,可负,但不为零.以知函数)(xfy定义域为A,)(xfy的定义域为B,则 A与 B 关系为BA.2.函数)(xfy在点0 x处连续与点0 x处可导的关系:函数)(xfy在点0 x处连续是)(xfy在点0 x处可导的必要不充分条件.可以证明,如果)(xfy在点0 x处可导,那么)(xfy点0 x处连续.事实上,令xxx0,则0 xx相当于0 x.于是)()()(lim)(lim)(lim0000000 xfxfxxfxxfxfxxxx).()(0)()(limlim)()(lim)()()(lim0000000000000 xfxfxfxfxxfxxfxfxxxfxxfxxxx如果)(xfy点0 x处连续,那么)(xfy在点0 x处可导,是不成立的.例:|)(xxf在点00 x处连续,但在点00 x处不可导,因为xxxy|,当x 0 时,1xy;当x 0 时,1xy,故xyx0lim不存在.注:可导的奇函数函数其导函数为偶函数.可导的偶函数函数其导函数为奇函数.3.导数的几何意义:函数)(xfy在点0 x处的导数的几何意义就是曲线)(xfy在点)(,(0 xfx处的切线的斜率,也 就 是 说,曲 线)(xfy在 点P)(,(0 xfx处 的 切 线 的 斜 率 是)(0 xf,切 线 方 程 为).)(00 xxxfyy4.求导数的四则运算法则:)(vuvu)(.)()()(.)()(2121xfxfxfyxfxfxfynn)()(cvcvvccvuvvuuv(c为常数))0(2vvuvvuvu注:vu,必须是可导函数.若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设xxxf2sin2)(,xxxg2cos)(,则)(),(xgxf在0 x处均不可导,但它们和)()(xgxfxxcossin在0 x处均可导.5.复合函数的求导法则:)()()(xufxfx或xuxuyy复合函数的求导法则可推广到多个中间变量的情形.6.函数单调性:函数单调性的判定方法:设函数)(xfy在某个区间内可导,如果)(xf0,则)(xfy为增函数;如果)(xf0,则)(xfy为减函数.常数的判定方法;如果函数)(xfy在区间 I 内恒有)(xf=0,则)(xfy为常数.注:0)(xf是 f(x)递增的充分条件,但不是必要条件,如32xy在),(上并不是都有0)(xf,有一个点例外即x=0 时 f(x)=0,同样0)(xf是 f(x)递减的充分非必要条件.一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么 f(x)在该区间上仍旧是单调增加(或单调减少)的.7.极值的判别方法:(极值是在0 x附近所有的点,都有)(xf)(0 xf,则)(0 xf是函数)(xf的极大值,极小值同理)当函数)(xf在点0 x处连续时,如果在0 x附近的左侧)(xf0,右侧)(xf0,那么)(0 xf是极大值;如果在0 x附近的左侧)(xf0,右侧)(xf0,那么)(0 xf是极小值.也就是说0 x是极值点的充分条件是0 x点两侧导数异号,而不是)(xf=0.此外,函数不可导的点也可能是函数的极值点.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注:若点0 x是可导函数)(xf的极值点,则)(xf=0.但反过来不一定成立.对于可导函数,其一点0 x是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数3)(xxfy,0 x使)(xf=0,但0 x不是极值点.例如:函数|)(xxfy,在点0 x处不可导,但点0 x是函数的极小值点.8.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.9.几种常见的函数导数:I.0C(C 为常数)xxcos)(sin211)(arcsinxx1)(nnnxx(Rn)xxsin)(cos211)(arccosxxII.xx1)(lnexxaalog1)(log11)(arctan2xxxxee)(aaaxxln)(11)cot(2xxarcIII.求导的常见方法:常用结论:xx1|)|(ln.形如).()(21naxaxaxy或).()().()(2121nnbxbxbxaxaxaxy两边同取自然对数,可转化求代数和形式.无理函数或形如xxy这类函数,如xxy取自然对数之后可变形为xxylnln,对两边求导可得xxxxxyyxyyxxxyylnln1ln.