【参考实用】人教版八年级上册数学教案全册.doc8511.pdf
-
资源ID:83520794
资源大小:517.87KB
全文页数:10页
- 资源格式: PDF
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【参考实用】人教版八年级上册数学教案全册.doc8511.pdf
优质参考文档 优质参考文档 人教版八年级数学上册教案全集(20KK20KK 学年度第一学期)一、指导思想:通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。二、学情分析:八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。初二(7)班和初二(18)班两班比较,初二(7)班学生单纯,优生稍多一些,后进面较小,只有少数学生不思上进,但初二(7)学生思维虽然非常活跃,但在学习上不思进取,大多数学生不求进步只图贪玩,有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。三、教材分析:第十一章:全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。第十二章:轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定概念。第十三章:实数通过学习一种新的运算开方,进而学习一种新数无理数,即无限不循环小数,把数的范围从有理数扩大到实数。在开方里面,重点是开平方和开立方,出现的无理数都是带优质参考文档 优质参考文档 根号的数,只要求会求一个非负数的平方根和算术平方根,会求一个数的立方根,而不要求进行有关无理数的运算和化简。第十四章:一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境建立数学模型概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。第十 K 五章:整式在形式上力求突出:整式及整式运算产生的实际背景使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。四、教学措施:1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。2、认真备课、精心授课,抓紧课堂四十 K 五分钟,努力提高教学效果。3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。4、不断改进教学方法,提高自身业务素养。5、教学中注重自主学习、合作学习、探究学习。五、教学安排:(见下页教学进度登记表)教学进度及教案批阅登记表 周次 起止日期 教学内容及要求 周授 课教案批阅 优质参考文档 优质参考文档 111 全等三角形 教学目标 1知道什么是全等形、全等三角形及全等三角形的对应元素;2知道全等三角形的性质,能用符号正确地表示两个三角形全等;批阅 日期 组长 签名 1 8.248.30 111 全等三角形(2)1121 三角形全等的条件(一)(2)1121 三角形全等的条件(二)(2)5 2 8.319.6 1123 三角形全等的条件(三)(2)11 2 3 三角形全等的条件-直角三角形全等的判定(四)(2)5 3 9.79.13 113 角的平分线的性质(一)(2)1132 角的平分线的性质(二)(2)1211 轴对称(一)(2)5 4 9.149.20 1212 轴对称(二)(2)122 轴对称变换(2)5 5 9.219.27 122.2 用坐标表示轴对称(2)5 6 9.2810.4 12311 等腰三角形(2)12311 等腰三角形(二)(2)5 7 10.510.11 123 等边三角形(一)(2)1232 等边三角形(二)(2)1232.等边三角形(三)(2)5 8 10.1210.18 13.1 平方根(3)132立方根(2)5 9 10.1910.25 133 实数(2)141 变量与函数(2)1413 函数图象(1)5 10 10.2611.1 1413 函数图象(2)1421 正比例函数(1)1422 一次函数(2)5 11 11.211.8 中期复习 中期考试 5 12 11.911.15 1422 一次函数(1)一次函数应用(2)实践与探索(2)5 13 11.1611.22 14.31 一次函数与一元一次方程(2)5 14 11.2311.29 15.1.1整式(1)15.1.2整式的加减(2)5.2.1同底数幂的乘法(1)15.2.2幂的乘方(1)15.2.3积的乘方(1)5 15 11.3012.6 15.2.4整式的乘法(4)15.3.1平方差公式(2)5 16 12.712.13 15.3.2完全平方公式(3)15.4.1同底数幂的除法(1)15.4.2整式的除法(2)5 17 12.1412.20 15.5因式分解(1)15.5.1提公因式法(2)15.5.2公式法(3)5 18 12.2112.27 第十K五章小结(3)总复习(3)5 19 12.281.3 期终复习 期终考试 5 20 1.41.10 工 作 总 结 5 优质参考文档 优质参考文档 3能熟练找出两个全等三角形的对应角、对应边 教学重点:全等三角形的性质 教学难点:找全等三角形的对应边、对应角 教学过程 提出问题,创设情境 1、问题:你能发现这两个三角形有什么美妙的关系吗?这两个三角形是完全重合的 2学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样 3获取概念 让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号 形状与大小都完全相同的两个图形就是全等形 要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同 概括全等形的准确定义:能够完全重合的两个图形叫做全等形请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义仔细阅读课本中“全等”符号表示的要求 导入新课 利用投影片演示 将ABC 沿直线 BC 平移得DEF;将ABC 沿 BC 翻折180得到DBC;将ABC 旋转 180得AED 甲DCABFE乙DCAB丙DCABE 议一议:各图中的两个三角形全等吗?不难得出:ABCDEF,ABCDBC,ABCAED (注意强调书写时对应顶点字母写在对应的位置上)C1B1CABA1优质参考文档 优质参考文档 启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略 观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等 全等三角形的对应角相等 例 1如图,OCAOBD,C 和 B,A 和 D 是对应顶点,说出这两个三角形中相等的边和角 问题:OCAOBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?将OCA 翻折可以使OCA 与OBD 重合因为 C 和 B、A 和 D 是对应顶点,所以 C 和 B 重合,A 和 D 重合 C=B;A=D;AOC=DOBAC=DB;OA=OD;OC=OB 总结:两个全等的三角形经过一定的转换可以重合一般是平移、翻转、旋转的方法 例 2如图,已知ABEACD,ADE=AED,B=C,指出其他的对应边和对应角 分析:对应边和对应角只能从两个三角形中找,所以需将ABE和ACD 从复杂的图形中分离出来 根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素常用方法有:(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边 (2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角 解:对应角为BAE 和CAD 对应边为 AB 与 AC、AE 与 AD、BE 与 CD 例 3已知如图ABCADE,试找出对应边、对应角(由学生DCABODCABEDCABEO优质参考文档 优质参考文档 讨论完成)借鉴例 2 的方法,可以发现A=A,在两个三角形中A 的对边分别是 BC和 DE,所以 BC 和 DE 是一组对应边而 AB 与 AE 显然不重合,所以 AB与 AD 是一组对应边,剩下的 AC 与 AE 自然是一组对应边了 再根据对应边所对的角是对应角可得B 与D 是对应角,ACB 与AED 是对应角所以说对应边为 AB 与AD、AC 与 AE、BC 与 DE对应角为A 与A、B 与D、ACB 与AED 做法二:沿 A 与 BC、DE 交点 O 的连线将ABC翻折 180后,它正好和ADE重合这时就可找到对应边为:AB 与 AD、AC 与 AE、BC 与 DE对应角为A 与A、B 与D、ACB 与AED 课堂练习 课本 P90 练习 1 课本 P90 习题 131 复习巩固 1 课时小结 通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素 这也是这节课大家要重点掌握的 找对应元素的常用方法有两种:(一)从运动角度看 1翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素 2旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素 3平移法:沿某一方向推移使两三角形重合来找对应元素 (二)根据位置元素来推理 1全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边 2全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角 作业:课本 P90 习题 131、复习巩固 2、综合运用 3 课后反思 优质参考文档 优质参考文档 1121 三角形全等的条件(一)教学目标 1三角形全等的“边边边”的条件2了解三角形的稳定性 3经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程 教学重点:三角形全等的条件 教学难点:寻求三角形全等的条件 教学过程 创设情境,引入新课 出示投影片,回忆前面研究过的全等三角形 已知ABCABC,找出其中相等的边与角 图中相等的边是:AB=AB、BC=BC、AC=AC相等的角是:A=A、B=B、C=C 展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等这样作出的三角形一定与已知的三角形纸片全等)这是利用了全等三角形的定义来作图那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题 导入新课 出示投影片 1只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?2给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角CBACBA优质参考文档 优质参考文档 形一定全等吗?分别按下列条件做一做 三角形一内角为 30,一条边为 3cm 三角形两内角分别为 30和 50 三角形两条边分别为 4cm、6cm 学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流 结果展示:1只给定一条边时:只给定一个角时:2给出的两个条件可能是:一边一内角、两内角、两边 可以发现按这些条件画出的三角形都不能保证一定全等 给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能即:三内角、三条边、两边一内角、两内有一边 在刚才的探索过程中,我们已经发现三内角不能保证三角形全等下面我们就来逐一探索其余的三种情况 已知一个三角形的三条边长分别为6cm、8cm、10cm 你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?1作图方法:先画一线段 AB,使得 AB=6cm,再分别以 A、B 为圆心,8cm、10cm 为半径画弧,两弧交点记作 C,连结线段 AC、BC,就可以得到三角形 ABC,使得它们的边长分别为 AB=6cm,AC=8cm,BC=10cm 2以小组为单位,把剪下的三角形重叠在一起,发现都能够重合这说明这些三角形都是全等的 3特殊的三角形有这样的规律,要是任意画一个三角形 ABC,根据前面作法,同样可以作出一个三角形 ABC,使 AB=AB、AC=AC、BC=B3cm3cm3cm3030306cm4cm4cm6cm优质参考文档 优质参考文档 C将ABC剪下,发现两三角形重合这反映了一个规律:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”用上面的规律可以判断两个三角形全等判断两个三角形全等的推理过程,叫做证明三角形全等所以“SSS”是证明三角形全等的一个依据请看例题 例如图,ABC 是一个钢架,AB=AC,AD 是连结点 A 与 BC 中点 D 的支架 求证:ABDACD 师生共析要证ABDACD,可以看这两个三角形的三条边是否对应相等 证明:因为D 是 BC 的中点 所以 BD=DC 在ABD 和ACD 中 (ABACBDCDADAD公共边)所以ABDACD(SSS)生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的三角形的这个性质叫做三角形的稳定性 所以日常生活中常利用三角形做支架就是利用三角形的稳定性例如屋顶的人字梁、大桥钢架、索道支架等 随堂练习 如图,已知 AC=FE、BC=DE,点 A、D、B、F 在一条直线上,AD=FB 要用“边边边”证明ABCFDE,除了已知中的 AC=FE,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?2课本 P94 练习 课时小结 本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律 SSS并利用它可以证明简单的三角形全等问题 作业 1习题 132 复习巩固 1、2 习题 132 综合运用 9 课后作业:课堂感悟与探究 活动与探索 DCBAFDCBEA优质参考文档 优质参考文档 如图,一个六边形钢架 ABCDEF 由 6 条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用 结果:(1)可从这六个顶点中的任意一个作对角线,把这个六边形划分成四个三角形如图(1)为其中的一种(2)也可以把这个六边形划分成四个三角形如图(2)课后反思(1)(2)1121 三角形全等的条件(二)教学目标 1三角形全等的“边角边”的条件 2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程 3掌握三角形全等的“SS”条件,了解三角形的稳定性 4能运用“SS”证明简单的三角形全等问题 教学重点:三角形全等的条件 教学难点:寻求三角形全等的条件 教学过程 一、创设情境,复习提问 1怎样的两个三角形是全等三角形?2全等三角形的性质?3指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:图(1)中:ABDACE,AB与AC是对应边;图(2)中:ABCAED,AD与AC是对应边 三角形全等的判定的内容是什么?二、导入新课 FDCBEA