药理学重点(共56页).doc
精选优质文档-倾情为你奉上药理名词解释1、药理学:研究药物与机体相互作用及作用规律的学科,既研究药物对机体的作用及作用机制(药物效应动力学),也研究药物在机体的影响下所发生的变化及其规律(药物代谢动力学)。2、首过消除:从胃肠道吸收入门静脉系统的药物在到达全身血液循环前必先通过肝脏,如果肝脏对其代谢能力强,或由胆汁排泄的量大,则使进入全身血循环内的有效药物量明显减少,这种作用称为。3、再分布:首先分布到血流量大的脑组织发挥作用,随后由于其脂溶性高又向血流量少的脂肪组织转移,以致病人迅速苏醒,这种现象称为药物在体内的。4、肝肠循环:被分泌到胆汁内的药物及其代谢产物经由胆道及胆总管进入肠腔,然后随粪便排泄出去,经胆汁排入肠腔的药物部分可再经小肠上皮细胞吸收经肝脏进入血液循环,这种肝脏、胆汁、小肠间的循环称。5、一级消除动力学:是体内药物在单位时间内消除的药物百分率不变,也就是单位时间内消除的药物量与血浆药物浓度呈正比,也称线性动力学。TD:大多数药物属于、比率恒定、半衰期=0.69/k。6、零级消除动力学:是药物在体内以恒定的速率消除,即不论血浆药物浓度高低,单位时间内消除的药物量不变也称非线性动力学。TD:少数药物属于、半衰期可变。7、稳态浓度:等量等间隔连续多次给药,经45个半衰期后,血药浓度稳定在某一水平,称为,亦称为坪值。TD:消除药量与吸收药量相等、水平波动在有效浓度和中毒浓度之间、坪值波动与每次剂量和给药间隔呈正比、达坪时间与半衰期呈正比、首剂加倍立即达坪。8、药物消除半衰期:是血浆药物浓度下降一半所需要的时间,期长短可反映药物消除速度。9、清除率:是机体消除器官在单位时间内清除药物的血浆容积也即是单位时间内有多少毫升血浆中所含药物被机体清除。10、表观分布容积:当血浆和组织内药物分布达到平衡后,体内药物按此时的血浆药物浓度在体内分布时所需体液容积称。11、生物利用度:经任何给药途径一定剂量的药物后到达全身血循环内药物的百分率称。12、绝对生物利用度:以血管外的AUC(血药浓度-时间曲线下面积)和静脉注射的AUC的比值。13、相对生物利用度:对同一血管外给药途径的某一种药物制剂的AUC与相同的标准制剂的AUC的比值。14、生物等效性:如果药品含有同一有效成分,而且剂量、剂型和给药途径相同,则它们在药学方面应是等同的。两个药学等同的药品,若它们所含的有效成分的生物利用度无显著差别,则成为生物等效。15、不良反应:凡与用药目的无关,并为病人带来不适或痛苦的反应统称为,包括副反应、毒性反应、后遗反映、停药反应、变态反应、特异质反应。16、耐受性:连续多次反复给药,机体对药物的敏感性降低,需增加剂量才能起作用。分为急性耐受性与交叉耐受性17、耐药性:病原体或肿瘤细胞对反复应用的化疗药物的敏感性降低。18、依赖性:是在长期应用某种药物后,机体对这种药物产生了生理性的或是精神性的依赖和需求,分生理依赖性具有耐受性证据或停药症状)和精神依赖性e是需要药物缓解精神紧张和情绪障碍、但无耐受性和停药症状的一种依赖性)。19、肾上腺素的翻转:a受体阻断药能选择性地与a肾上腺素受体结合,使b受体作用占优势,其本身不激动或较弱激动肾上腺素受体,却能妨碍去甲肾上腺素能神经递质及肾上腺素受体激动药与a受体结合,从而产生抗肾上腺素作用。他们能将肾上腺素的升压作用翻转为降压作用,这个现象称为。20、内在拟交感活性:有些b肾上腺素受体阻断药与b受体结合后除能阻断受体外,对b受体亦有部分激动作用。21、反跳rebound现象:长期应用b受体阻断药时突然停药,可引起原来病情加重,如血压升高、严重心律失常或心绞痛发作次数增加,甚至产生急性心肌梗死或猝死,此种现象。22、最小肺泡浓度:在一个大气压下能使50%病人痛觉消失的肺泡气体中全麻药的浓度。各种吸入性全麻药都有恒定的MAC值,数值越低,麻醉作用越强。23、分离麻醉:氯胺酮为中枢兴奋性氨基酸递质NMDA(N-甲基门冬氨酸)受体的特异性阻断剂,能阻断痛觉冲动向丘脑和新皮层的传导,同时又能兴奋脑干及边缘系统,引起意识模糊,短暂记忆缺失及满意的镇痛效应,但意识并未完全消失,常有梦幻,肌张力增加,血压升高,此状态。24、瑞夷综合症:在儿童感染病毒性疾病如流感、水痘、麻疹、流行性腮腺炎等使用阿司匹林退热时,偶可引起急性脂肪变性-脑病综合症(瑞夷综合症),以肝衰竭合并脑病为突出表现,虽少见,但预后恶劣。25、折返(reentry):指一次冲动下传后,又可顺着另一环形通路折回,再次兴奋原已兴奋过的心肌,是引发快速心律失常的重要机制之一。26、抗菌药(abtibacterial drugs):对细菌有抑制或杀灭作用的药物包括抗生素和人工合成药物(磺胺类,喹诺酮类)27、抗生素(antibiotics):由各种微生物产生的,能杀灭或抑制其他微生物的物质,分为天然与人工半合成。28、抗菌谱(antibacterial spectrum):抗菌药物的抗菌范围,分为广谱(对多种病原微生物有效地抗菌药)与窄谱(仅对一种细菌或局限于某种细菌有抗菌作用的药物)。29、抑菌药(bacteriostatic drugs);是指能抑制抑菌生长繁殖而无杀灭细菌作用的抗菌药物,如四环素类、红霉素类、磺胺类。30、杀菌药(bactericidal drugs):是指具有杀灭细菌作用的抗菌药物,如青霉素类、头孢菌素类、氨基糖苷类。31、最低抑菌浓度(minimum inhibitory concerntration MIC):是测定抗菌药物抗菌活性大小的一个指标,指在体外培养细菌18-24h后能抑制培养基内病原菌生长的最低药物浓度。32、最低杀菌浓度(minimum bactericidal concerntration MBC):是衡量抗菌药物抗菌活性大小的指标,能够杀灭培养基内细菌或使细菌数减少99.9%的最低药物浓度称为。33、化疗指数(chemotherapeutic index,CI)是评价化学治疗药物有效性与安全性的指标,常以化疗药物的半数致死量LD50与治疗感染动物的半数有效量ED50之比来表示:LD50/ED50,或用5%的致死量LD5与95%的有效量ED95之比来表示:LD5/ED95,指数越大,毒性越小,临床应用价值越高。34、抗菌后效应(post antibiotic effect,PAE):指细菌与抗生素短暂接触,抗生素浓度下降,低于MIC或消失后,细菌生长仍受到持续抑制效应。35、首次接触效应(first expose effect):是抗菌药物在初次接触细菌时有强大的抗菌效应,再度接触或连续与细菌接触,并不明显地增强或再次出现这种明显的效应,需要间隔相当时间以后,才会再起作用,氨基糖苷类抗生素有明显的首次接触效应。36、二重感染(superinfections):长期口服或注射使用广谱抗生素时,敏感菌被抑制,不敏感菌乘机大量繁殖,由原来的劣势群体变为优势群体,造成新的感染,称为菌群交替症或。37、生长比率(growth fraction,GF):肿瘤增殖细胞群与全部肿瘤细胞群之比称。38、细胞周期特异性药物:仅对增殖周期的某些时相敏感而对G0期细胞不敏感的药物,如作用于S期的抗代谢药物和作用于M期细胞的长春碱类药物。38、细胞周期非特异性药物:能杀灭处于增殖周期各时相的细胞甚至包括G0期细胞的药物,如直接破坏DNA结构类似以及影响其复制或转录功能的药物。39、基因治疗(gene therapy):是指改变细胞遗传物质为基础的医学治疗,通过一定基因转移载体将正常或有治疗价值的目的基因或核酸分子导入靶细胞,从而到防治疾病的效果。第一章 绪论第二章 药效学药理学(pharmacology):研究药物与机体(含病原体)相互作用及作用规律。药效动力学/药效学(pharmacodynamics):研究药物对机体的作用及作用原理,不良反应的作用及机制。药代动力学/药动学(pharmacokinetics):研究药物在体内的过程,即机体对药物处置的动态变化。包括药物在体内吸收、分布、代谢和排泄的演变过程和血液浓度随时间的变化。药物(drug):用于治疗、预防和诊断疾病或计划生育,能影响机体(包括病原体)的生理机能和生化过程以及细胞生物学过程的化学物质。药物作用(drug action):药物与机体细胞相互分子之间的初始作用。动因药理效应(pharmacologic effect):在药物作用下,引起机体原有生理生化功能或形态的变化。结果按基本类型分:兴奋:原有功能的增强;抑制:原有功能的减弱 选择性:药物在适当剂量时,只对少数组织器官发生比较明显的药理效应, 而对其它器官或组织的作用较小或不发生药理效应。选择性强范围窄,针对性强;选择性差范围广,针对性差,副作用多。治疗作用:药物产生的符合临床用药目的的作用。 按效果分:对因治疗:治疗病因,治本;对症治疗:改善症状,治标。补充疗法/替代疗法: 补充体内营养或代谢物质不足。不良反应(adverse drug reaction/ADR):药物引起的不符合药物治疗目的,并给病人带来痛苦或危害的反应。引起的疾病称药源性疾病。 副作用(side reaction)药物在治疗剂量引起的与治疗目的无关的作用。 毒性反应(toxic reaction)用量过大或用药时间过长,药物在体内积蓄过多引起的严重不良反应。特殊毒性:致癌、致畸胎、致突变。 后遗效应(after reaction)停药后血浆药物浓度下降至阈浓度以下时残留的药理效应。 变态反应(allergic reaction)药物引起的免疫反应,反应性质与药物原有性质无关。 停药反应(withdrawal reaction)长期用药后突然停药,原有疾病加剧(回跃反应)。 继发反应(secondary reaction):药物的治疗作用引起的不良后果。如长期应用广谱抗生素造成的二重感染。 KD的概念:表示D与R的亲和力,即引起最大效应一半时(50%受体被占领时)所需药物的剂量(浓度)。KD 与D和R的亲和力成反比;若将KD取负对数(-logKD)= PD2,则:pD2与药物和受体的亲和力成正比pD2越大,亲和力越大。剂量效应关系/量效关系(dose-effect relationship)药理效应的强弱与其剂量的大小在一定范围内呈一定关系。最小有效量/最小有效浓度(minimal effective dose/concentration):引起效应的最小药量或最小药物浓度,即阈剂量或阈浓度。治疗量(常用量,therapeutic dose)比最小有效量大比最小中毒量小得多的量; 极量(最大治疗量 maximal dose)疗效最大的剂量;最小中毒量:出现中毒症状的最小剂量。量反应:效应强弱随剂量增减呈连续性量的变化;形成足直型曲线。质反应:效应强弱随剂量增减呈连续性质变。用阳性率或阴性率表示效应。形成S型曲线。 半数有效量(ED50):量反应中能引起50%最大效应强度的药量;质反应中引起50%实验对象出现阳性反应的药量。(尽可能小则好)半数致死量(LD50):引起50%实验对象死亡的药量。(尽可能大则好)治疗指数(therapeutic index/TI):以药物LD50与ED50的比值来表示药物的安全性。一般TI值大于3称药物安全。最大效应(Emax)/效能(efficacy):药理效应达到的不再随剂量或浓度的增加而增强的极限效应。效价强度(potency):引起等效应的相对浓度或剂量。剂量越小,效价强度越大。亲和力:药物与受体结合的能力。内在活性:药物与受体结合时发生效应的能力。激动药(agonist):既有亲和力又有内在活性的药物。与受体结合并激动受体产生效应。吗啡,Adr,ACh 完全激动药:较强的亲和力和较强的内在活性;特点:结合的Ra Ri,足量使完全转为Ra ,产生Emax;1; 部分激动药:较强的亲和力但内在活性不强(<1)。特点:只引起较弱的激动效应,增加浓度也达不到Emax;拮抗药(antagonist):有较强的亲和力而无内在活性(=0)的药物,与受体结合不激动受体,反因占据受体而拮抗激动药效应。竞争性拮抗药:可逆性地与激动药竞争相同的受体;增加激动药的浓度可与拮抗药竞争结合部位,可使激动药量效曲线平行右移,但斜率和最大效应不变。非竞争性拮抗药:与受体结合是相对不可逆的;通过增加激动药剂量也不能恢复到无拮抗药时的最大效应( Emax ),随着此类拮抗药剂量的增加,激动药量效曲线逐渐下移,斜率、最大效应降低。第三章 药动学转运速率(R)主要决定于: 药物的溶解性(脂溶性或水溶性);膜两侧药物浓度,膜面积,膜厚度;药物的解离性(度)简单扩散(simple diffusion):又称被动扩散、单纯扩散和脂溶性扩散。药物转运中最常见、最重要的形式,速度决定于膜两侧的药物浓度梯度、药物脂溶性和药物解离度。pKa 药物在溶液中解离50%时,该溶液的pH值;当pH值与pKa值的差值以数学值增减时,药物的解离型与非解离型的浓度比值,却以指数值变化酸性环境中,弱碱性药物解离多而不易扩散;碱性环境中,弱酸性药物解离多而不易扩散。吸收(absorption):药物从给药部位进入血循环的过程。 速度比较:静注>吸入>舌下>直肠>肌注>皮下注射>口服>皮肤、粘膜首关效应/首关消除(first-pass effect/elimination):某些药物首次通过肠壁或经肝门静脉进入肝脏时,被其中的酶所代谢,致使进入体循环的药量减少的一种现象。分布(distribution):吸收入血的药物随血流转运到组织器官的过程。 血液中:药物与血浆蛋白结合能限制药物经生物膜的转运,是药物体内的一种暂时贮存形式。在血浆蛋白结合部位上,药物间或药物与内源性物质间能相互竞争。 组织中:肾毛细血管内皮膜孔大,肝静脉窦缺乏完整的内皮药物从肾、肝消除药物中毒时肝肾器官首先受累;是药物对某些细胞成分具有特殊亲和力的结果,例如脂肪;多是一种贮存现象。生物转化:代谢或药物转化。药物在体内发生的化学结构的改变。最终目的是使药物排除体外。I相反应(phase I reactions):氧化、还原、水解(多数丢失活性或产生活性、毒性) 相反应(phasereactions):结合反应,与体内水溶性大的物质结合,利排泄。主要部位:肝脏。肝微粒体细胞色素P450酶系(与一氧化碳结合后其吸收光谱主峰在450nm处)及非微粒体酶系(胆碱脂酶、单胺氧化酶)催化。酶诱导药:提高药酶的活性,增加自身或他药代谢速率。苯巴比妥、利福平酶抑制药:抑制药酶的活性,减慢他药的代谢速率。西米替丁、环丙沙星排泄(excretion):体内药物或其他代谢物排出体外的过程。肾脏排泄:肾小管细胞的有机酸转运载体和有机碱转运载体。分泌机制相同的两药合用,可发生竞争性抑制,使药效增强延长。肝肠循环(hepatoenteral circulation):随胆汁分泌的药物及其代谢产物经小肠上皮吸收,再由肝门静脉重新进入全身循环。时量关系(time-concentration relationship):血浆药物浓度随时间的改变而发生变化的规律。时量曲线下面积(AUC):反映进入体循环药物的相对量。峰浓度(Cmax) 一次给药后血浆的最高浓度。 吸收和消除达平衡 生物利用度(bioavailability/F):给予一定剂量的药物后,能被吸收进入体循环的药物相对量及速度。(反应吸收速率和程度) D为用药剂量,A为体循环中药物总量 绝对生物利用度(absolute bioavailability):静脉注射(iv)与血管外给药(ev)时AUC比值。用于评价同一种药物的不同给药途径吸收情况。 相对生物利用度(relative bioavailability):某药“标准制剂”与同种药物的不同或相同制剂,在相同给 药途径下的AUC相除,所得值;评价:同一厂家生产的同一品种的不同批号;同一品种的不同剂型不同药厂生产的相同剂型之间的吸收情况是否相近或等同; 表观分布容积(apparent volume of distribution,Vd):体内药物总量达到平衡后,按此时测得的血浆药物浓度计算该药应占有的体液总容积(体内药量与血药浓度的比值)。(单位为L或L/kg)。不是真正的容积空间,是假设药物在体内所有部位都是按血浆药物浓度均匀分布的一个理论容积。意义:推算药物的分布范围; 推算药物排泄速度;Vd越小,排泄越快,体内存留时间短。计算体内药物总量或欲到达某一有效血浆药物浓度时应该用的剂量。一级消除动力学特点:(1)单位时间内消除的药量与血药浓度正相关(恒比消除单位时间内消除的药量与血药浓度有关。(2)半衰期恒定(t=0.693/Ke 是恒定值,不随药物浓度高低改变,与血药浓度无关)。 零级动力学特点:(1)单位时间内消除药量不变(单位时间内消除的药量与血药浓度无关)恒量消除。 (2)半衰期不恒定(t1/2=0.5C0/k0) 。随药物浓度的变化而改变,剂量大半衰期长;反应机体消除药物的能力已饱和乙醇、苯妥英钠、阿司匹林等; 半衰期(half-life,t1/2):药物在体内分布达平衡状态后血浆药物浓度降低一半所需的时间。半衰期的意义: 反应药物消除快慢的程度,以及机体消除药物的能力。 了解t1/2有助于设计最佳给药间隔、预计停药后药物从体内消除的时间以及预计连续给药后达到稳态血药浓度的时间。 按每隔1个半衰期用药一次,则经过4-5个半衰期后体内药量可达稳态水平。 1次用药后经过4-5个半衰期,药物可从体内基本消除。房室模型:分析药物在体内的动力学过程,系统内部按动力学特点分为若干房室,划分主要取决于药物体内转运速率。血药浓度衰减速率与时间的关系(C-t曲线)始终成一直线的为一室模型;曲线由几个不同斜率的线段组成则为二室或多室模型。 二室模型:由两房室(中央室、周边室)组成,时量曲线初段血药浓度迅速下降为相(分布相),分布平衡后较慢衰落进入相(消除相)。稳态浓度 (Css,坪浓度):按一级动力学规律消除的药物,其体内药物总量随着不断给药而逐步增多,直至从体内消除的药物量和进入体内的药物量相等时,体内药物总量不再增加而达到稳定状态。负荷剂量与维持量方案:如每隔一个t1/2给药一次时,采用首剂加倍剂量的负荷量可使血药浓度迅速达到Css,然后再按 t1/2改用维持量。第五章 传出神经系统药物概论自主神经(autonomic nervous system)包括:交感神经、副交感神经及(内脏传入感觉神经),以传出神经系统药物可概括运动神经和自主神经两类。 交感神经(sympathetic nerve):促进机体适应环境的急骤变化,心率加快、皮肤与内脏血管收缩、支气管扩张、肝糖元分解加速、扩瞳。副交感神经(parasympathetic nerve):保护机体、修复休整、促进消化、加速排泄、心脏活动抑制、消化道功能增强、缩瞳。肾上腺素受体:受体分布功能1皮肤、粘膜、内脏血管、虹膜辐射肌皮肤、粘膜及内脏血管收缩,扩瞳2突触前膜负反馈抑制NA的释放1心脏正性心力作用:兴奋性、收缩力、传导、心率、心输出量 2支气管、冠状血管、骨骼肌血管平滑肌舒张平滑肌3脂肪组织脂肪分解M受体效应:器官激动拮抗循环器官心跳减慢,收缩减弱心跳加快加强呼吸器官支气管平滑肌收缩,促进粘膜腺分泌(窒息)支气管平滑肌舒张消化器官促进胃肠运动,消化液分泌(呕吐、大便失禁)抑制胃肠运动,消化液分泌减少,促进括约肌收缩(腹气胀)泌尿器官促进排尿:逼尿肌收缩、括约肌舒张(小便失禁)抑制排尿:逼尿肌舒张、括约肌收缩(尿潴留)眼瞳孔收缩,睫状肌收缩瞳孔扩张,睫状肌松弛皮肤促进汗腺分泌汗腺分泌减少植物神经的主要功能:器官交感神经副交感神经循环器官心跳加快加强,皮肤及内脏血管收缩心跳减慢,收缩减弱呼吸器官支气管平滑肌舒张支气管平滑肌收缩,促进粘膜腺分泌消化器官抑制胃肠运动,促进括约肌收缩促进胃肠运动,促进括约肌舒张泌尿器官抑制排尿:逼尿肌舒张、括约肌收缩促进排尿:逼尿肌收缩、括约肌舒张眼瞳孔扩张,睫状肌松弛瞳孔收缩,睫状肌收缩皮肤竖毛肌收缩、汗腺分泌代谢促进糖原分解,促进肾上腺髓质分泌促进胰岛素分泌自主神经受体:乙酰胆碱受体: M胆碱受体(G蛋白耦联):副交感神经节后纤维支配的效应器、支配汗腺的交感神经节后纤维。 N胆碱受体(离子通道): NN受体:神经节N受体(N1受体)以及支配肾上腺的交感神经节后纤维。NM受体:神经肌接头N受体(N2受体)。第六章胆碱受体激动药M受体激动药:毛果芸香碱(匹鲁卡品,pilocarpine)抗胆碱脂酶药(可逆性):新斯的明(neostigmine,prostigmine) 毒扁豆碱药理作用对眼:1 缩瞳:兴奋瞳孔括约肌。2 降低眼内压:虹膜拉向中心,根部变薄,前房角间隙变大,易于房水进入巩膜静脉窦循环。 3 调节痉挛:睫状肌收缩,悬韧带放松,晶状体增厚,屈光度增加,视近物清楚,远物模糊对腺体:汗腺、唾液腺分泌增加。1 兴奋骨骼肌:抑制AchE,使乙酰胆碱增多,兴奋N-R;直接激动骨骼肌运动终板上N2R;促进运动神经末梢释放乙酰胆碱;2兴奋胃肠道及膀胱平滑肌;3减慢心率;4 对心血管、腺体、眼、支气管平滑肌作用弱临床应用青光眼(降眼内压);虹膜炎(与扩瞳药合用,防止虹膜与晶状体粘连)重症肌无力;术后腹胀气、尿潴留;阵发性室上性心动过速;肌松药的解毒(筒箭毒碱);青光眼和青少年假性近视不良反应消化道反应:恶心、呕吐、腹泻;汗腺分泌、流涎、哮喘;视力模糊、眼痛、头痛。1腹痛、多汗、唾液增多、肌肉颤动、肌无力加重;2胆碱能危象:剂量过大,神经-肌肉接头持久去极化而阻断受体作用;禁用于:肠梗阻、尿路梗阻、支气管哮喘 难逆性:有机磷农药 中毒治疗原则:1 迅速消除毒物避免继续吸收 2 对症治疗减轻中毒症状:吸氧、补液、补电解质 3 使用解毒药:阿托品;AchE复活药:碘解离定、氯解离定。第七章 胆碱受体阻断药M胆碱受体阻断药阿托品(atropine)来自颠茄、曼陀罗、莨菪药理作用对眼:1 扩瞳:松弛瞳孔括约肌 2 眼内压升高:虹膜括约肌松弛,中心向外周拉动,根部变厚,不易房水循环。 3 调节麻痹:睫状肌松弛,悬韧带拉紧,晶状体变薄,屈光度减小,视远物清晰。腺体:随剂量增加依次抑制唾液腺、汗腺、支气管腺体、胃腺的分泌。对平滑肌:松弛 胃肠道、膀胱>胆道、支气管>子宫颈对心血管系统:1 心率加快,抑制迷走神经功能(小剂量引起心脏搏动徐缓:阻断M1受体,减弱突触中Ach对递质释放的负反馈作用);2促进房室传导;扩张小血管,改善微循环。对中枢神经系统:1-2mg兴奋延脑、大脑;2-5mg烦躁不安,多语,谵妄;10mg幻觉,定向障碍,共济失调,惊厥,呼吸麻痹。临床应用制腺体分泌:麻醉前用药;内镜检查前用药;严重盗汗、流涎。眼科应用:虹膜睫状体炎:松弛虹膜扩约肌及睫状肌;眼底检查。维持1-2周,少用;儿童验光配镜除平滑肌痉挛:与度冷丁合用治疗胆绞痛、肾绞痛;缓慢型心律失常;感染性休克。解救有机磷中毒不良反应青光眼患者、前列腺肥大患者禁忌 山莨菪碱(anisodamine) 654-2解痉作用选择性高,改善微循环作用强,副作用少。 用于:内脏绞痛,感染性休克东莨菪碱(scopolamine) 中枢抑制作用强,抑制腺体分泌。 用于麻醉前给药; 抑制大脑皮层和前庭神经内耳功能,抑制胃肠蠕动。 用于防治晕动症。N胆碱受体阻断药:神经节阻断药;骨骼肌松驰药除极化型肌松药:抗AChE药不仅不能拮抗这类药的肌松作用,相反能加强非除极化型肌松药:抗AChE药有拮抗作用,过量可用新斯的明解救第八章 肾上腺素受体激动药去甲肾上腺素(noradrenaline、NA)激动药肾上腺素(adrenaline,epinephrine) 、激动药药理作用收缩血管:激动1受体,收缩小动脉、小静脉。皮肤黏膜>肾血管>脑、肝、肠系膜血管>骨骼肌血管;冠状动脉舒张:1直接作用:心脏兴奋腺苷增多冠脉扩张冠脉流量增加2间接作用:血压上升灌注压升高冠脉流量增加;血压增加:(外周阻力增加)。兴奋心脏:微弱的激动1受体,正性心力作用,整体情况下,心率由于血压升高而反射性降低。心脏:以1受体为主,与2受体和受体共存。正性心力作用。血管:受体:小动脉、毛细血管前扩约肌皮肤、粘膜、胃肠、肾血管-收缩;2受体:骨骼肌和肝脏血管-扩张;冠脉扩张:冠状动脉2 激活+心脏兴奋,腺苷增加。血压:双重作用(小剂量时,收缩压上升,骨骼肌血管舒张>皮肤粘膜血管收缩而舒张压下降,脉压增加;高剂量时,收缩压上升,皮肤粘膜血管收缩>>骨骼肌血管舒张使舒张压也上升,脉压降低)。平滑肌:激动2受体,解痉;收缩血管,减轻浮肿。代谢:提高机体代谢,血糖升高。临床应用神经性休克早期;急性低血压症状;上消化道出血(局部缩血管1-3mg稀释后口服)心脏骤停;过敏性休克;支气管哮喘(禁用于心源性哮喘,对阿司匹林哮喘无效);与局部麻醉药合用,延长麻醉时间;鼻黏膜与齿龈出血。不良反应部分组织缺血坏死:普鲁卡因+酚妥拉明热敷。急性肾衰:血管收缩,少尿、无尿、肾实质损害;药期间保持尿量>25ml/h。禁忌证:高血压、动脉硬化、器质性心脏病;少尿、无尿、微循环障碍。只能静脉滴注一般表现:烦燥、焦虑、恐惧感、震颤、心悸、出汗和皮肤苍白,停药后可自行消失。 剂量过大:剧烈头痛,血压剧升,诱发脑溢血,亦能引起心律失常,甚至心室纤颤。 禁忌证:高血压、动脉硬化、缺血性心脏病、心力衰竭、甲亢和糖尿病。可皮下、静脉注射 多巴胺(dopamine)激动、受体及外周多巴胺受体,小剂量激动血管床的D1受体,引起血管扩张。与利尿药合用治疗急性肾功能衰竭。用于各种休克 麻黄碱(ephedrine)口服有效。鼻黏膜充血引起鼻塞,用0.5-1%溶液滴鼻,消除黏膜充血肿胀。防治支气管哮喘;防治麻醉引起的低血压;荨麻疹及血管神经性水肿异丙肾上腺素(isoprenaline,isoproterenol) 激动药药理作用兴奋心脏: 1受体强大的激动作用,兴奋窦房结可致心率失常。扩张血管:激动骨骼肌血管2受体,血管舒张。血压:收缩压升高,舒张压下降,脉压增大。平滑肌:对支气管平滑肌的舒张作用显著,对黏膜血管无收缩作用。促进代谢临床应用支气管哮喘:控制支气管哮喘急性发作。房室传导阻滞:、度房室传导阻滞。心脏骤停:室性心动过缓、严重房室传导阻滞、窦房结功能低下。感染性休克:心排除量低,中心静脉压高的感染性休克不良反应常见有心悸、头晕、皮肤潮红,禁忌症:冠心病、心肌炎、甲状腺功能亢进。总结,治疗重症肌无力用新斯的明,肌松用琥珀胆碱和筒箭毒碱、苯二氮卓类,硫酸镁有反跳现象的药物:普萘洛尔、苯妥英钠、钙拮抗药降低房室传导阻滞:阿托品、 ;加重的是普萘洛尔、 感染性休克:阿托品、异丙肾上腺素、山莨菪碱、神经性休克:去甲肾上腺素过敏性休克:肾上腺素首过效应:卡托普利;哌唑嗪;利多卡因;硝酸甘油、吗啡第九章 肾上腺素受体阻断药酚妥拉明(phentolamine)短效竞争性受体阻断药普萘洛尔(propranolol)受体阻断药药理作用舒张血管:静脉>动脉(引起直立性低血压),阻断血管平滑肌1受体,直接舒张血管。肾上腺素作用的翻转:受体阻断药将肾上腺素的升压作用翻转为降压作用。选择性阻断了受体,血管收缩作用被取消,而与血管舒张有关的受体未受影响,舒血管作用被充分表现。兴奋心脏:舒张血管将反射性兴奋交感神经,加快心率;阻断2受体,促NA释放,激动心脏1受体;阻断K+通道,Ca2+内流增加。其他:拟胆碱作用,兴奋胃肠平滑肌;组胺样作用,促进胃酸分泌;唾液腺、汗腺分泌增加。受体阻断作用:心脏功能抑制:心肌收缩、心率、输出量(三负);器官血流量减少:肝、肾、骨骼肌、心脏;收缩支气管,增加气道阻力;影响代谢。内在拟交感活性(ISA):有些受体阻断剂与受体结合后,除能阻断受体外,还具有部分激动作用。抑制肾素的分泌。细胞膜稳定作用临床应用外周血管痉挛性疾病;去甲肾上腺素外漏(普鲁卡因+酚妥拉明);嗜铬细胞瘤诊断、高血压危象、术前准备;休克(给药前须补足血容量;合用去甲肾上腺素 );心肌梗塞和充血性心衰。治疗室上性心动过速、房颤、房扑、窦性心动过速;治疗高血压心绞痛,心衰早期;治疗甲状腺机能亢进、控制心悸、心律失常、激动不安等;治疗偏头痛、肌震颤、青光眼(噻吗洛尔)、肝硬化引起的上消化道出血。不良反应拟胆碱作用:腹痛,腹泻,呕吐,诱发溃疡。胃炎、胃、十二指肠溃疡患者慎用。扩血管作用:低血压;并可反射性兴奋心脏,心率加快,诱发心律失常或心绞痛。冠心病患者慎用。心血管反应(加重房室传导阻滞、)雷诺氏现象、诱发加剧支气管哮喘、反跳现象、低血糖反应。酚苄明(phenoxybenzamine):长效类非竞争性;与受体形成牢固的共价键,非竞争性阻断。药理作用:作用强大缓慢持久,扩张血管,降低外周阻力,血压下降,心率增加。临床应用:外周血管痉挛性疾病;休克;嗜铬细胞瘤(分泌肾素)。第十二章 镇静催眠药镇痛药和催眠药间无明显质的区别,小剂量起催眠作用,大剂量起镇静作用。苯二氮卓类(Benzodiazepines,BZ or BDZ)地西泮(长效);氯氮卓、劳拉西泮(中)三唑仑(短)巴比妥类(Barbirurates)苯巴比妥(长)、异戊巴比妥(中)、硫喷妥钠(超短)药理作用一、抗焦虑 小于镇静剂量即呈良好的抗焦虑作用,首选药;选择性高,安全范围大,作用持久,依赖性小。二、镇静催眠 明显缩短NREMS(非快动眼睡眠)的SWS四期,延长NREMS二期,明显缩短入睡时间,显著延长睡眠持续时间,减少觉醒次数。1,治疗指数高,对呼吸影响 2,对REMS影响小,停药引起REMS延长较轻 3,对肝药酶无诱导作用,不影响其它药物代谢 4,依赖性,戒断综合征较轻 5,思睡,运动失调等副作用较轻 三、抗惊厥,抗癫痫,地西泮首选 四、中枢性肌肉松弛(抑制脑干网状结构下行系统对r神经元的易化作用;增强脊髓神经元突触前抑制,抑制多突触反射) 五、短暂性记忆缺失(麻醉前给药)较大剂量致血压降低心率减慢镇静催眠:苯巴比妥,REMS反跳性延长,噩梦多,成瘾抗惊厥:苯巴比妥,异戊巴比妥癫痫:异戊巴比妥,大发作和持续状态好,小发作和婴儿肌阵挛性发作差麻醉前用药:硫喷妥钠临床应用失眠:暂时性失眠、间断性失眠、焦虑性失眠惊厥:地西泮首选,破伤风、小儿高热性惊厥、药物中毒性惊厥,子痫(妊娠高血压综合征)癫痫:小发作(硝西泮、氯硝西泮),若是持续状态(地西泮首选),肌阵挛性发作及婴儿痉挛(氯硝西泮)中枢性肌肉松弛:去大脑后强直短暂性记忆缺失不良反应CNS反应:嗜睡、头昏、乏力、记忆力下降、共济失调,语言不清,视力模糊呼吸和循环抑制:抑制肺泡换气功能(静脉注射过快过量时易发生)急性中毒。耐受性,依赖性,成瘾禁忌症:老年,是肝、肾、呼吸障碍、重症肌无力。司机,高空作业,孕妇及婴儿后遗反应:宿醉思睡,精细动作不协调,高空、机器作业者禁用。耐受性,依赖性,成瘾戒断症状较重呼吸抑制(静脉注射过快过量时易发生)急性中毒。诱导肝药酶作用机制:BDZ类与位于GABAA受体a亚单位上BDZ受体结合,诱导GABAA受体构象发生改变,促进GABA与GABAA受体结合,增加氯离子通道开放频率(巴比妥延长开放时间);促进更多氯离子内流,而产生中枢抑制作用特效拮抗药:氟马西尼,解救过量中毒水合氯醛:不缩短REMS,停药后无代偿性REMS时间延长,醒后无后遗作用,消化道溃疡者禁用。第十三章 抗癫痫药和抗惊厥药苯妥英钠(sodium phenytoin)非镇静催眠性药理作用抗癫痫,抑制突触传递的强直后增强(PTP)不能抑制癫痫病灶异常放电,可阻止异常放电向正常脑组织扩散苯巴比妥两者都可以。细胞膜稳定作用;阻滞电压信赖性Na+通道;阻滞电压信赖性Ca2+通道(L、N型)(对T-Ca2+通道无阻断作用,可能与其对小发作无效有关);抑制钙调素激酶活性,影响突触传递功能。临床应用1、抗癫痫,治疗强直-阵挛性发作(大发作)首选药;对小发作无效 2、治疗外周神经痛,三叉神经、舌咽神经、坐骨神经痛 3、抗心律失常不良反应牙龈增生。用维生素D预防。应定期检查血常规。致畸反应 。过敏反应皮肤瘙痒、皮疹、粒细胞缺乏等久服骤停可使癫痫发作加剧,甚至诱发癫痫持续状态乙琥胺:防治小发作的首选药(抑制T-Ca2+通道有关)卡马西平:很有效的广谱抗癫痫药,局限性发作首选药之一,对精神运动性发作疗效好。丙戊酸钠:广谱抗癫痫药,小发作优于乙琥胺,但肝毒性大,不首选硫酸镁:口服,泻下,利胆;注射,中枢抑制骨骼肌松弛。阻滞神经肌肉接头的传递,与神经末梢Ach释放需要的Ca2+竞争使其释放减少。抗惊厥总结:大发作 苯妥英钠、卡马西平、苯巴比妥等小发作 乙琥胺(首选)、丙戊酸钠、硝西泮等。精神运动性发作 卡马西平、苯妥英钠等癫痫持续状态 地西泮首选(iv)第十四章 抗精神失常药氯丙嗪(chlopromazine冬眠灵)低温麻醉和人工冬眠药理作用一、中枢系统作用关 1、神经安定作用 2、抗精神病作用,迅速控制兴奋躁动症状,对阴性症状(II型)疗效较差,无根治作用 3、镇吐作用,不对抗前庭刺激引起的呕吐,小剂量阻断延髓催吐化学感受区(CTZ)D2受体、大剂量抑制呕吐中枢 4、对体温调节的影响,抑制下丘脑体温调节中枢,不但降低发热者体温,还能降低正常人体温 。5、增强中枢抑制药物的作用,氯丙嗪与中枢抑制药合用时,后者应适当减量。二、对心血管系统影响:阻断受体(可翻转肾上腺素升压效应),降压药(易耐受),阻断M受体,阿托品样作用