欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    中考数学二次函数综合题分类训练无答案精选文档9970.pdf

    • 资源ID:83556841       资源大小:668.81KB        全文页数:11页
    • 资源格式: PDF        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中考数学二次函数综合题分类训练无答案精选文档9970.pdf

    中考数学二次函数综合题分类训练无答案精选文档 TTMS system office room【TTMS16H-TTMS2A-TTMS8Q8-2018 年中考二次函数综合题分类训练 类型一 与线段、周长有关的问题 针对演练 1.如图,抛物线y14x2bxc的图象过点A(4,0),B(4,4),且抛物线与y轴交于点C,连接AB,BC,AC.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的点,求PBC周长的最小值及此时点P的坐标;(3)若E是线段AB上的一个动点(不与A、B重合),过E作y轴的平行线,分别交抛物线及x轴于F、D两点.请问是否存在这样的点E,使DE2DF若存在,请求出点E的坐标;若不存在,请说明理由.2.如图,抛物线yx2bxc过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PDy轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M,使|MAMC|最大?若存在,请求出点M的坐标;若不存在,请说明理由 3.(2016 重庆南开阶段测试一)如图,在平面直角坐标系中,抛物线yax2bxc分别交x轴于A(4,0)、B(1,0),交y轴于点C(0,3),过点A的直线y34x3 交抛物线于另一点D.(1)求抛物线的解析式及点D的坐标;(2)若点P为x轴上的一个动点,点Q在线段AC上,且Q点到x轴的距离为95,连接PC、PQ,当PCQ周长最小时,求出点P的坐标;(3)如图,在(2)的结论下,连接PD,在平面内是否存在A1P1D1,使A1P1D1APD(点A1、P1、D1的对应点分别是A、P、D,A1P1平行于y轴,点P1在点A1上方),且A1P1D1的两个顶点恰好落在抛物线上?若存在,请求出点A1的横坐标m;若不存在,请说明理由 4.如图,抛物线yx2bxc与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF2,EF3.(1)求抛物线的解析式;(2)连接CB交EF于点M,再连接AM交OC于点R,求ACR的周长;(3)设G(4,5)在该抛物线上,P是y轴上一动点,过点P作PHEF于点H,连接AP,GH,问APPHHG是否有最小值?如果有,求出点P的坐标;如果没有,请说明理由 5.如图,菱形ABCD的边长为 6 且DAB60,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系动点P从点D出发沿折线DCB向终点B以 2 单位/秒的速度运动,同时动点Q从点A出发沿x轴负半轴以 1 单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t秒,直线PQ交边AD于点E.(1)求经过A、D、C三点的抛物线解析式;(2)是否存在时刻t使得PQDB若存在,请求出t值;若不存在,请说明理由;(3)若F、G为DC边上两点,且DFFG1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小,并求出周长最小值 6.(2016 资阳)已知抛物线与x轴交于A(6,0)、B(54,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MNx轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图,将OMN沿x轴向右平移t个单位(0t5)到OMN的位置,MN、MO与直线AC分别交于点E、F.当点F为MO的中点时,求t的值;如图,若直线MN与抛物线相交于点G,过点G作GHMO交AC于点H,试确定线段EH是否存在最大值若存在,求出它的最大值及此时t的值;若不存在,请说明理由 类型二 与面积有关的问题 1.(2016 大渡口区诊断性检测)如图,抛物线yax2bx4 交x轴于A、B两点(点A在点B的左侧),交y轴于点C,过点A的直线yx2 交抛物线于点D,且D的横坐标为 4.(1)求抛物线的解析式;(2)点E为抛物线在第一象限的图象上一点,若ADE的面积等于 12,求直线AE的解析式;(3)在(2)的条件下,点P为线段AE上的一点,过点P作PHAB,将PAH沿PH翻折,点A落在x轴上点Q处,若PDQ45,求P点坐标 2.如图,抛物线yax2bx3(a0)与x轴、y轴分别交于A(1,0)、B(3,0)、C三点(1)求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD、CD.试问,在对称轴左侧的抛物线上是否存在一点P,满足PBCDBC如果存在,请求出点P的坐标;如果不存在,请说明理由;(3)如图,在(2)的条件下,将BOC沿x轴正方向以每秒 1 个单位长度的速度向右平移,记平移后的三角形为BOC.在平移过程中,BOC与BCD重叠部分的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?3.(2016 重庆西大附中第九次月考)如图,在平面直角坐标系中,抛物线yax2bx4 经过点D(2,4),且与x轴交于A(3,0),B两点,与y轴交于C点,连接AC,CD,BC.(1)求抛物线的解析式;(2)如图,点P是抛物线上的一个动点,过点P作x轴的垂线l,l分别交x轴于点E,交直线AC于点M.设点P的横坐标为m.当 0m2 时,过点M作MGBC,MG交x轴于点G,连接GC,则m为何值时,GMC的面积取得最大值,并求出这个最大值;(3)如图,在 RtA1B1C1中,A1C1B190,A1C11,B1C12,直角边A1C1在x轴上,且A1与A重合,当 RtA1B1C1沿x轴从右向左以每秒 1 个单位长度的速度移动时,设A1B1C1与ABC重叠部分的面积为S,求当S45时,A1B1C1移动的时间t.4.(2016 重庆八中二模)如图,抛物线yx22x3 与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图,直线AD上方的抛物线上有一点F,过点F作FGAD于点G,作FH平行于x轴交直线AD于点H,求FGH周长的最大值;(3)如图,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q与点Q关于直线AM对称,连接MQ,PQ.当PMQ与APQM重合部分的面积是APQM面积的14时,求APQM的面积 第 4 题图 5.(2016 湘西州)如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线yax2bx经过点B(1,4)和点E(3,0)两点(1)求抛物线的解析式;(2)若点D在线段OC上,且BDDE,BDDE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得BDM的周长为最小,并求出BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得PAD的面积最大?若存在,请求出PAD面积的最大值及此时P点的坐标;若不存在,请说明理由 第 5 题图 类型三 与特殊三角形有关的问题 针对演练 1.(2016 枣庄)如图,已知抛物线yax2bxc(a0)的对称轴为直线x1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.(1)若直线ymxn经过B,C两点,求抛物线和直线BC的解析式;(2)在抛物线的对称轴x1 上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标;(3)设点P为抛物线的对称轴x1 上的一个动点,求使BPC为直角三角形的点P的坐标 第 1 题图 2.(2016 重庆巴蜀九下入学考试)如图,抛物线y45x2245x4 与x轴交于点A、B,与y轴交于点C,抛物线的对称轴与x轴交于点是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)(1)求点A,B的坐标;(2)连接AC、PB、BC,当SPBCSABC时,求出此时点P的坐标;(3)分别过点A、B作直线CP的垂线,垂足分别为点D、E,连接MD、ME.问MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由 第 2 题图 3.(2016 重庆南开阶段测试三)如图,抛物线yax2bx4 交x轴于A、B两点(点A在点B左侧),交y轴于点C,连接AC、BC,其中COBO2AO.(1)求抛物线的解析式;(2)点Q为直线BC上方的抛物线上一点,过点Q作QEAC交BC于点E,作QNx轴于点N,交BC于点M,当EMQ的周长L最大时,求点Q的坐标及L的最大值;(3)如图,在(2)的结论下,连接AQ分别交BC于点F,交OC于点G,四边形BOGF从F开始沿射线FC平移,同时点P从C开始沿折线COOB运动,且点P的运动速度为四边形BOGF平移速度的 2倍,当点P到达B点时,四边形BOGF停止运动,设四边形BOGF平移过程中对应的图形为B1O1G1F1,当PFF1为等腰三角形时,求B1F的长度 第 3 题图 4.(2016 重庆十一中一诊)如图,在平面直角坐标系中,抛物线yax2bxc的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(1,0),(0,3),直线x1 为抛物线的对称轴,点D为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式及点D的坐标;(2)点P为直线x1 右方抛物线上的一点(点P不与点B重合),记A、B、C、P四点所构成的四边形面积为S,若S52SBCD,求点P的坐标;(3)点Q是线段BD上的动点,将DEQ沿边EQ翻折得到DEQ,是否存在点Q使得DEQ与BEQ的重叠部分图形为直角三角形,若存在,请求出BQ的长;若不存在,请说明理由 5.(2016 重庆一中上期期末考试)已知如图,抛物线y12x22x52与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点,对称轴交x轴于点E.(1)如图,连接BD,试求出直线BD的解析式;(2)如图,点P为抛物线第一象限上一动点,连接BP,CP,AC,当四边形PBAC的面积最大时,线段CP交BD于点F,求此时DFBF的值;(3)如图,已知点K(0,2),连接BK,将BOK沿着y轴上下平移(包括BOK),在平移的过程中直线BK交x轴于点M,交y轴于点N,则在抛物线的对称轴上是否存在点G,使得GMN是以MN为直角边的等腰直角三角形,若 存在,请直接写出点G的坐标;若不存在,请说明理由 第 5 题图 6.(2016 重庆 A 卷)如图,在平面直角坐标系中,抛物线y13x22 33x3 与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当PCD的面积最大时,点Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E,点A的对应点为点A.将AOC绕点O顺时针旋转至A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A,C1E,AC1E是否能为等腰三角形?若能,请求出所有符合条件的点E的坐标;若不能,请说明理 由 第 6 题图

    注意事项

    本文(中考数学二次函数综合题分类训练无答案精选文档9970.pdf)为本站会员(得****3)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开