采样频率说明(共4页).doc
精选优质文档-倾情为你奉上采样频率、采样点数、分辨率、谱线数(line)1 最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。2采样点数N与谱线数M有如下的关系:N=2.56M 其中谱线数M与频率分辨率F及最高分析频率Fm有如下的关系:F=Fm/M 即:M=Fm/F 所以:N=2.56Fm/F采样点数的多少与要求多大的频率分辨率有关。例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率F=1 Hz ,则采样频率和采样点数设置为:最高分析频率Fm=8·50Hz=400Hz;采样频率Fs=2.56·Fm=2.56 ·400Hz=1024Hz;采样点数N=2.56·(Fm/F)=2.56·(400Hz/1Hz)=1024 谱线数M=N/2.56=1024/2.56=400条按照FFT变换,实际上得到的也是1024点的谱线,但是我们知道数学计算上存在负频率,是对称的,因此,实际上我们关注的是正频率部分对应的谱线,也就是说正频率有512线,为什么我们通常又说这种情况下是400线呢,就是因为通常情况下由于频率混叠和时域截断的影响,通常认为401线到512线的频谱精度不高而不予考虑。另外,采样点数也不是随便设置的,即不是越大越好,反之亦然.对于旋转机械必须满足整周期采样,以消除频率畸形,单纯提高分辨率也不能消除频率畸形过去,有人以为数据越长越好,或随便定时域信号长度,其实,这样做是在某些概念上不清楚,例如,不清楚整周期采样.不产生频率混叠的最低采样频率Fs要求在2倍最大分析频率Fm,之所以采用2.56倍主要跟计算机二进制的表示方式有关。其主要目的是避免信号混淆保证高频信号不被歪曲成低频信号。采样长度T的选择首先要保证能反映信号的全貌,对瞬态信号应包括整个瞬态过程;对周期信号,理论上采集一个周期信号就可以了。其次需考虑频率分辩率,采样长度T在最大分析频率Fm确定的情况下与频率分辩率f是反比关系,也就是T越长f越小即频率分辩率越高。一般的分析软件都是设置谱线数M,采样点数N=2.56M。信号分析中常用的采样点数是512、1024、2048、4096等。等效于我们常说的200、400、800、1600线等频谱线数,频谱分析一般采样点数选取2的整数次方。fFm/M,可见谱线数M越大频率分辩率f越小即频率分辩率越高。在电机的故障诊断中,为了发现边带间隔为极通频率(一般在1Hz以下)的峰值,常常需要极高的分辩率(1Hz以下),一般选择210HzFm,6400谱线。至于整周期采样是很难实现的,必然会因为信号截断而产生泄露,为了避免这些误差,所以要采取加窗的办法。1.频率分辨率的2种解释解释一:频率分辨率可以理解为在使用DFT时,在频率轴上的所能得到的最小频率间隔f0=fs/N=1/NTs=1/T,其中N为采样点数,fs为采样频率,Ts为采样间隔。所以NTs就是采样前模拟信号的时间长度T,所以信号长度越长,频率分辨率越好。是不是采样点数越多,频率分辨力提高了呢?其实不是的,因为一段数据拿来就确定了时间T,注意:f0=1/T,而T=NTs,增加N必然减小Ts ,因此,增加N时f0是不变的。只有增加点数的同时导致增加了数据长度T才能使分辨率越好。还有容易搞混的一点,我们在做DFT时,常常在有效数据后面补零达到对频谱做某种改善的目的,我们常常认为这是增加了N,从而使频率分辨率变好了,其实不是这样的,补零并没有增加有效数据的长度,仍然为T。但是补零其实有其他好处:1.使数据N为2的整次幂,便于使用FFT。2.补零后,其实是对DFT结果做了插值,克服“栅栏”效应,使谱外观平滑化;我把“栅栏”效应形象理解为,就像站在栅栏旁边透过栅栏看外面风景,肯定有被栅栏挡住比较多风景,此时就可能漏掉较大频域分量,但是补零以后,相当于你站远了,改变了栅栏密度,风景就看的越来越清楚了。3.由于对时域数据的截短必然造成频谱泄露,因此在频谱中可能出现难以辨认的谱峰,补零在一定程度上能消除这种现象。那么选择DFT时N参数要注意:1.由采样定理:fs>=2fh,2.频率分辨率:f0=fs/N,所以一般情况给定了fh和f0时也就限制了N范围:N>=fs/f0。解释二:频率分辨率也可以理解为某一个算法(比如功率谱估计方法)将原信号中的两个靠得很近的谱峰依然能保持分开的能力。这是用来比较和检验不同算法性能好坏的指标。在信号系统中我们知道,宽度为N的矩形脉冲,它的频域图形为sinc函数,两个一阶零点之间的宽度为4/N。由于时域信号的截短相当于时域信号乘了一个矩形窗函数,那么该信号的频域就等同卷积了一个sinc函数,也就是频域受到sinc函数的调制了,根据卷积的性质,因此两个信号圆周频率之差W0必须大于4/N。从这里可以知道,如果增加数据点数N,即增加数据长度,也可以使频率分辨率变好,这一点与第一种解释是一样的。同时,考虑到窗函数截短数据的影响存在,当然窗函数的特性也要考虑,在频率做卷积,如果窗函数的频谱是个冲击函数最好了,那不就是相当于没截断吗?可是那不可能的,我们考虑窗函数主要是以下几点:1.主瓣宽度B最小(相当于矩形窗时的4/N,频域两个过零点间的宽度)。2.最大边瓣峰值A最小(这样旁瓣泄露小,一些高频分量损失少了)。3.边瓣谱峰渐近衰减速度D最大(同样是减少旁瓣泄露)。在此,总结几种很常用的窗函数的优缺点:矩形窗:B=4/N A=-13dB D=-6dB/oct三角窗:B=8/N A=-27dB D=-12dB/oct汉宁窗:B=8/N A=-32dB D=-18dB/oct海明窗:B=8/N A=-43dB D=-6dB/oct布莱克曼窗:B=12/N A=-58dB D=-18dB/oct可以看出,矩形窗有最窄的主瓣,但是旁瓣泄露严重。汉宁窗和海明窗虽主瓣较宽,但是旁瓣泄露少,是常选用的窗函数。2. 采样周期与频率分辨率fs/N常称作为频率分辨率,它实际是作FFT时谱图中的两条相邻谱线之间的频率间隔,也有称作步长。单位是Hz、Khz等。频率分辨率实际有二重含意,在这里只是其中一种。1/fs的单位的s、ms、us或分、时.年等。1/fs代表采样周期,是时间域上两个相邻离散数据之间的时间差。因此fs/N用在频率域,只在DFT以后的谱图中使用;而1/fs用时间域,只要数据经采样,离散化后任何其它的应用中都可使用。例如有的数字滤波器中就用到。f=fs/N=1/T;f是频率采样间隔,同时也是频率分辨率的重要指标,如果这个值越小,则频率分辨率越高。1/fs往往用在求时间序列上,如(0:N-1)*1/fs等等,如果这个不好理解,可以把前面的公式求倒数,这就清楚多了3. 采样定理采样过程所应遵循的规律,又称取样定理、抽样定理。采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。采样定理是1928年由美国电信工程师首先提出来的,因此称为奈奎斯特采样定理。1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理。1948年信息论的创始人对这一定理加以明确地说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。采样定理有许多表述形式,但最基本的表述方式是时域采样定理和频域采样定理。采样定理在数字式遥测系统、时分制遥测系统、信息处理、数字通信和采样控制理论等领域得到广泛的应用。时域采样定理 频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±t),f(t1±2t),.来表示,只要这些采样点的时间间隔t1/2F,便可根据各采样值完全恢复原来的信号f(t)。 采样定理时域采样定理的另一种表述方式是:当时间信号函数f(t)的最高频率分量为fM时,f(t)的值可由一系列采样间隔小于或等于1/2fM的采样值来确定,即采样点的重复频率f2fM。图为模拟信号和采样样本的示意图。时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。频域采样定理 对于时间上受限制的连续信号f(t)(即当t>T 时,f(t)=0,这里T =T2-T1是信号的持续时间),若其频谱为F(),则可在频域上用一系列离散的采样值来表示,只要这些采样点的频率间隔。参考书目刘文生、李锦林编:取样技术原理与应用,科学出版社,北京,1981。4. 分析频率/采样点数/谱线数的设置要点1最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。2采样点数N与谱线数M有如下的关系:N=2.56M 其中谱线数M与频率分辨率F及最高分析频率Fm有如下的关系:F=Fm/M 即:M=Fm/F 所以:N=2.56Fm/F采样点数的多少与要求多大的频率分辨率有关。例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率F=1 Hz ,则采样频率和采样点数设置为:最高分析频率Fm=8·50Hz=400Hz;采样频率Fs=2.56·Fm=2.56·400Hz=1024Hz;采样点数N=2.56·(Fm/F)=2.56·(400Hz/1Hz)=1024=210谱线数M=N/2.56=1024/2.56=400条专心-专注-专业