欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    概率论与数理统计考试试卷与答案30354.pdf

    • 资源ID:83951257       资源大小:847.22KB        全文页数:13页
    • 资源格式: PDF        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    概率论与数理统计考试试卷与答案30354.pdf

    .word 资料可编辑 .一.填空题(每空题 2 分,共计 60 分)1、A、B 是两个随机事件,已知0.3)B(p,5.0)(,4.0)A(pABP,则)BA(p 0.6,)B-A(p 0.1 ,)(BAP=0.4,)BA(p0.6。2、一个袋子中有大小相同的红球 6 只、黑球 4 只。(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。(2)若有放回地任取 2 只,则第一次、第二次取红色球的概率为:9/25。(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55 。3、设随机变量X 服从 B(2,0.5)的二项分布,则1Xp0.75,Y 服从二项分布 B(98,0.5),X与Y相互独立,则X+Y服从 B(100,0.5),E(X+Y)=50 ,方差D(X+Y)=25 。4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为 0.1、0.15现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。(1)抽到次品的概率为:0.12 。(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 5、设二维随机向量),(YX的分布律如右,则a0.1,)(XE0.4,YX与的协方差为:-0.2,2YXZ的分布律为:6、若 随 机 变 量X)4 ,2(N且8413.0)1(,9772.0)2(,则42XP0.815,(,12NYXY则 5,16 )。7、随机变量 X、Y 的数学期望 E(X)=-1,E(Y)=2,方差 D(X)=1,D(Y)=2,且 X、Y 相互独立,则:)2(YXE -4 ,)2(YXD 6。X Y 0 1 -1 1 0.2 0.3 0.4 a z 1 2 概率 0.6 0.4 .word 资料可编辑 .8、设2),(125YXCovYDXD,)(,)(,则)(YXD 30 9、设261,XX 是总体)16,8(N的容量为 26 的样本,X为样本均值,2S为样本方差。则:XN(8,8/13 ),16252S)25(2,52/8sX )25(t。二、(6 分)已知随机变量 X 的密度函数其它 ,010 ,)(2xaxxf 求:(1)常数a,(2))5.15.0(Xp(3)X 的分布函数 F(x)。解:(1)由3,1)(adxxf得 2 (2)515.0(Xp=5.15.015.02875.03)(dxxdxxf 2 (3)xxx0 xxF1 ,110 ,0)(3 2 三、(6 分)设随机变量(X,Y)的联合概率密度为:其它 ,010,10 ,2),(yxyyxf 求:(1)X,Y 的边缘密度,(2)讨论 X 与 Y 的独立性。解:(1)X,Y 的边缘密度分别为:其他,其他 010 22)()(010 12)(1010yyydxdxyxfyfxydyxfYX 4 (2)由(1)可见)()(),(yfxfyxfYX,可知:X,Y 相互独立 2 一.填空题(每小题 2 分,共计 60 分)1.设随机试验 E 对应的样本空间为 S。与其任何事件不相容的事件为 不可能事件,而与其任何事件相互独立的事件为 必然事件;设 E 为等可能型试验,且 S 包含 10 个样本点,则按古典概率的定义其任一基本事件 .word 资料可编辑 .发生的概率为 1/10。23.0)(,4.0)(BPAP。若A与B独立,则)(BAP 0。28 ;若已知BA,中至少有一个事件发生的概率为6.0,则)(BAP 0.3,)(BAP 1/3。3、一个袋子中有大小相同的红球 5 只黑球 3 只,从中不放回地任取 2 只,则取到球颜色不同的概率为:15/28。若有放回地回地任取 2 只,则取到球颜色不同的概率为:15/32 。4、1)()(XDXE。若X服从泊松分布,则 0XP11e;若X服从均匀分布,则 0XP 0 。5、设),(2NX,且3.042 ,22XPXPXP,则 2 ;0XP 0.8 。6、某体育彩票设有两个等级的奖励,一等奖为 4 元,二等奖 2 元,假设中一、二等奖的概率分别为 0.3 和 0.5,且每张彩票卖 2 元。是否买此彩票的明智选择为:买 (买,不买或无所谓)。7、若随机变量X)5,1(U,则40Xp 0.75 ;)12(XE_7_,)13(XD 12 8、设44.1)(,4.2)(),(XDXEpnbX,则 nXP34.0,并简化计算kkkkk66026.04.062.7)4.06(6.04.062。9、随机变量 X、Y 的数学期望 E(X)=-1,E(Y)=2,方差 D(X)=1,D(Y)=2,且 X、Y 相互独立,则:)2(YXE-4,)2(YXD 6 。10、设161,XX 是总体)4,20(N的容量为 16 的样本,X为样本均值,2S为样本方差。则:XN(20,1/4 ),120 Xp=0.0556 ,16152S)15(2,51/20sX t(15)。此题中9772.0)2(。11、随机变量X的概率密度0 ,00 ,)(xxexfx,则称X服从指数分布,)(XE1。.word 资料可编辑 .13、设二维随机向量),(YX的分布律是:则X的方差)(XD 0.21 ;YX与的相关系数为:XY 3/7。二、(7 分)甲、乙、丙三个工厂生产同一种零件,设甲厂、乙厂、丙厂的次品率分别为 0.2,0.1,0.3现从由甲厂、乙厂、丙厂的产品分别占15%,80%,5%的一批产品中随机抽取一件,发现是次品,求该次品为甲厂生产的概率 解:设321A,A,A分别表示产品取自甲、乙、丙厂,有:%5)P(A80%,)A(P%,15)p(A321 2 B 表示取到次品,3.0)ABP(0.1,)AB(P,2.0)Ap(B321,2 由贝叶斯公式:)BA(p1=24.0)()(/)()(3111kkkABPApABPAp(4 三、(7 分)已知随机变量 X 的密度函数其它 ,010 ,)(xaxxf 求:(1)常数a,(2))5.00(Xp(3)X 的分布函数 F(x)。解:(1)由2,1)(adxxf得 2 (2)51.0(Xp=5.005.0025.02)(xdxdxxf 3 (3)xxx0 xxF1 ,110 ,0)(2 2 四、(7 分)设随机变量(X,Y)的联合概率密度为:其它 ,010,10 ,4),(yxxyyxf 求:(1)X,Y 的边缘密度,(2)由(1)判断 X,Y 的独立性。解:(1)X,Y 的边缘密度分别为:X Y 0 1 0 1 0.4 0.3 0.3 0 .word 资料可编辑 .其他,其他,010 24)()(010 24)()(1010yyxydxdxyxfyfxxydyxdyyxfxfYX 5 (2)由(1)可见)()(),(yfxfyxfYX,可知:X,Y 相互独立 2 七、(5分)某人寿保险公司每年有10000人投保,每人每年付12元的保费,如果该年内投保人死亡,保险公司应付 1000 元的赔偿费,已知一个人一年内死亡的概率为 0.0064。用中心极限定理近似计算该保险公司一年内的利润不少于 48000 元的概率。已知8413.0)1(,9772.0)2(。解:设 X 为该保险公司一年内的投保人死亡人数,则 X B(10000,0.0064)。该保险公司的利润函数为:XL1000120000。2 所以7248000100012000048000XPXPLP 996.764729936.00064.01000064XP用中心极限定理 8413.0)1(3 答:该保险公司一年内的利润不少于 48000 元的概率为 0。8413 二.填空题(每小题 2 分,共计 60 分)1、A、B 是两个随机事件,已知0.3)B(p,5.0)A(p,则 a)若BA,互斥,则)B -A(p 0.5;b)若BA,独立,则)BA(p 0.65;c)若2.0)(BAp,则)BA(p 3/7.2、袋子中有大小相同的红球 7 只,黑球 3 只,(1)从中不放回地任取 2 只,则第一、二次取到球颜色不同的概率为:7/15。(2)若有放回地任取 2 只,则第一、二次取到球颜色不同的概率为:21/50。.word 资料可编辑 .(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为:21/55 .3、设随机变量 X 服从泊松分布87),(XPXp,则XE 8 .4、设随机变量 X 服从 B(2,0.8)的二项分布,则 2Xp 0.64,Y 服从 B(8,0.8)的二项分布,且X 与 Y 相互独立,则1YXP=1-0.210,)(YXE8。5 设某学校外语统考学生成绩 X 服从正态分布 N(75,25),则该学校学生的及格率为 0.9987,成绩超过 85 分的学生占比85XP为 0.0228。其中标准正态分布函数值9987.0)3(,9772.0)2(,8413.0)1(.6、设二维随机向量),(YX的分布律是有 的相关系数则a_0.1_,X的数学期望)(XE_0.4_,YX与xy_-0.25_。16,8的两个独立样7、设161,.,XX及81,.,YY分别是总体)16,8(N的容量为本,YX,分别为样本均值,2221,SS分别为样本方差。则:X N(8,1),YX N(0,1.5),5.12YXp=0.0456,161521S)15(2,2221SS F(15,7)。此题中9987.0)3(,9772.0)2(,8413.0)1(8、设321,.XXX是总体X的样本,下列的统计量中,A,B,C 是)(XE的无偏统计量,)(XE的无偏统计量中统计量 C 最有效。A.321XXX B.312XX C.)(31321XXX D.21XX 9.设某商店一天的客流量 X 是随机变量,服从泊松分布)(,71,.,XX为总体X的样本,)(XE的矩估计量为X,160,168,152,153,159,167,161 为样本观测值,则)(XE的矩估计值为 160 10、在假设检验中,容易犯两类错误,第一类错误是指:H0 成立的条件下拒绝 H0 的错误,也称为弃真错X Y 0 1 -1 1 0.3 0.3 0.3 a .word 资料可编辑 .误。二、(6 分)已知随机变量 X 的密度函数其它 ,02 ,)(2xxaxf 求:(1)常数a,(2))45.0(Xp(3)X 的分布函数 F(X)。解:(1)由2,1)(adxxf得 2 (2)45.0(Xp=45.04225.02)(dxxdxxf 2 (3)xxxxF2 2-12 0)(2 三、(6 分)设随机变量 X,Y 的概率密度分别为:)(xfX其它 ,0,0 ,xex)(yfY其它 ,0,10 ,1y,且随机变量 X,Y 相互独立。(1)求(X,Y)的联合概率密度为:),(yxf(2)计算概率值XYp2。解:(1)X,Y 相互独立,可见(X,Y)的联合概率密度为)()(),(yfxfyxfYX,其它 ,010,0 ,),(yxeyxfx 2 (2)10122),()2(xxxydyedxdxdyYxfXYP 3 =131e 八、(6 分)某工厂要求供货商提供的元件一级品率为 90%以上,现有一供应商有一大批元件,经随机抽取100 件,经检验发现有 84 件为一级品,试以 5%的显著性水平下,检验这个供应商提供的元件的一级品率是否达到该厂方的的要求。(已知645.105.0Z,提示用中心极限定理)解 总体X服从p为参数的 0-1 分布,.word 资料可编辑 .9.0:,9.0:0100ppHppH 2 1001,.,XX为总体X的样本,在0H成立条件下,选择统计量 npppXZ)1(000,由 中心极限定理,z近似服从标准正态分布,则拒绝域为05.0zz 经计算该体05.02zz,即得 Z 在拒绝域内,故拒绝0H,认为这个供应商提供的元件的一级品率没有达到该厂方的的要求 1、A、B 是两个随机事件,已知0.125P(AB)0.5,)B(p,52.0)A(p,则)B -A(p0.125 ;)BA(p 0.875 ;)BA(p 0.5 .2、袋子中有大小相同的 5 只白球,4 只红球,3 只黑球,在其中任取 4 只(1)4 只中恰有 2 只白球 1 只红球 1 只黑球的概率为:412131425CCCC.(2)4 只中至少有 2 只白球的概率为:4124814381CCCC.(3)4 只中没有白球的概率为:41247CC 3、设随机变量 X 服从泊松分布65),(XPXp,则XE 6 .4、设随机变量 X 服从 B(2,0.6)的二项分布,则 2Xp 0.36 ,Y 服从 B(8,0.6)的二项分布,且 X 与 Y 相互独立,则1YXP=1-0.410 ,)(YXE 6 。5 设某学校外语统考学生成绩 X 服从正态分布 N(70,16),则该学校学生的及格率为 0.9938 ,成绩超过 74 分的学生占比74XP为 0.1587 。其中标准正态分布函数值9938.0)5.2(,9772.0)2(,8413.0)1(.6、有甲乙两台设备生产相同的产品,甲生产的产品占 60%,次品率为 10%;乙生产的产品占 40%,次品率为 20%。(1)若随机地从这批产品中抽出一件,抽到次品的概率为 0.14 ;(2)若随机地从这批产品中抽出一件,检验出为次品,则该产品是甲设备生产的概率是 3/7.word 资料可编辑 .7、设101,.,XX及151,.,YY分别是总体)6,20(N的容量为 10,15 的两个独立样本,YX,分别为样本均值,2221,SS分别为样本方差。则:X N(20,3/5),YX N(0,1),1YXp=0.3174,2321S)9(2,2221SS F(9,14)。此题中8413.0)1(。此题中9987.0)3(,9772.0)2(,8413.0)1(8、设321,.XXX是总体X的样本,下列的)(XE统计量中,C 最有效。A.321XXX B.312XX C.)(31321XXX 9.设某商店一天的客流量 X 是随机变量,服从泊松分布)(,71,.,XX为总体X的样本,)(XE的矩估计量为X,15,16,18,14,16,17,16 为样本观测值,则)(XE的矩估计值为 16 10、在假设检验中,往往发生两类错误,第一类错误是指 H0 成立的条件下拒绝 H0 的错误,第二类错误是指 H1 成立的条件下拒绝 H1 的错误 ,显著水平是指控制第一类错误的概率 小于 .二、(6 分)已知随机变量 X 的密度函数其它 ,00 ,1)(2xxaxf 求:(1)常数a,(2))31(Xp(3)X 的分布函数 F(X)。解:(1)由2,1)(adxxf得 2 (2)31(Xp=3130232112)(dxxdxxf 2 (3)xxxF0 arctanx 20 0)(2 第 2 页共 5 页 三、(6 分)设随机变量 X,Y 的概率密度分别为:)(xfX其它 ,0,20 ,2xx .word 资料可编辑 .)(yfY其它 ,0,10 ,2yy,且随机变量 X,Y 相互独立。(1)求(X,Y)的联合概率密度为:),(yxf(2)计算概率值2XYp。解:(1)X,Y 相互独立,可见(X,Y)的联合概率密度为)()(),(yfxfyxfYX,其它 ,010,20 ,),(yxxyyxf 2 (2)101222),()(xxyxydydxdxdyYxfXYP =61 3 uXnEuEknk)1()(1,它为u的无偏估计量.2 .996.244.295.07.0155.0)1(22222sn 2 八、(6 分)某工厂要求供货商提供的元件一级品率为 90%以上,现有一供应商有一大批元件,经随机抽取 100 件,经检验发现有 84 件为一级品,试以 5%的显著性水平下,检验这个供应商提供的元件的一级品率是否达到该厂方的的要求。(已知645.105.0Z,提示用中心极限定理)解 总体X服从p为参数的 0-1 分布,9.0:,9.0:0100ppHppH 2 1001,.,XX为总体X的样本,在0H成立条件下,选择统计量 npppXZ)1(000,由 中心极限定理,z近似服从标准正态分布,则拒绝域为05.0zz 经计算该体05.02zz,即得 Z 在拒绝域内,故拒绝0H,认为这个供应商提供的元件的一级品率没有达到该厂方的的要求 三.填空题(每空题 3 分,共计 60 分)1、A、B 是两个随机事件,已知0.3p(AB)0.5,)B(p,6.0)A(p,则 .word 资料可编辑 .)BA(p 0.8、)BA(p 0.6,事件 A,B 的相互独立性为:相互独立 。2、一个袋子中有大小相同的红球 6 只、黑球 3 只、白球 1 只,(1)从中不放回地任取 2 只,则第一、二次取到红球的概率为:1/3。(2)若有放回地任取 2 只,则第一、二次取到红球的概率为:9/25。(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到红球的概率为:21/55 .3、设随机变量 X 服从参数为 100 的泊松分布,则)(XDXE)(100 ,利用“3”法则,可以认为X 的取值大多集中在 70-130 范围。4、设随机变量X服从N(500,1600)的正态分布,则 580Xp 0.0228 ,Y服从N(500,900)的二项分布,且 X 与 Y 相互独立,则YX 服从 N(1000,2500)分布;若aaYXp则,05.0 1082.5 。8413.0)1(;9772.0)2(,95.0)645.1(5.已知随机变量 X 的密度函数其它 ,010 ,2)(xxxf 则:(1))515.0(Xp=0.75 (2)X 的分布函数 F(x)=xxx0 xxF1 ,110 ,0)(2 。6、设随机变量(X,Y)具有4)(,9)(YDXD,6/1XY,则)(YXD=11 ,)43(YXD=51 。7、两个可靠性为 p0 的电子元件独立工作,(1)若把它们串联成一个系统,则系统的可靠性为:2p;(2)若把它们并联成一个系统,则系统的可靠性为:2)1(1p;8、若随机变量X)3,0(U,则21Xp 2/3;)(XE_1.5 ,.word 资料可编辑 .)12(XD 3 二、(6 分)计算机中心有三台打字机 A,B,C,程序交与各打字机打字的概率依次为 0.6,0.3,0.1,打字机发生故障的概率依次为 0.01,0.05,0.04。已知一程序因打字机发生故障而被破坏了,求该程序是在 A,B,C 上打字的概率分别为多少?解:设“程序因打字机发生故障而被破坏”记为事件M,“程序在 A,B,C 三台打字机上打字”分别记为事件321,NNN。则根据全概率公式有 025.004.01.005.03.001.06.0)|()()(31iiiNMPNPMP,根据 Bayes 公式,该程序是在 A,B,C 上打字的概率分别为 24.0025.001.06.0)()|()()|(111MPNMPNPMNP,60.0025.005.03.0)()|()()|(222MPNMPNPMNP,16.0025.004.01.0)()|()()|(333MPNMPNPMNP。三、(6分)设 随 机 变 量X,Y的 概 率 密 度 分 别 为:)(xfX其它 ,0,0 ,xex,)(yfY其它 ,0,10 ,2yy,且随机变量 X,Y 相互独立。(1)求(X,Y)的联合概率密度为:),(yxf(2)计算概率值XYp2。解:(1)X,Y 相互独立,可见(X,Y)的联合概率密度为)()(),(yfxfyxfYX,其它 ,010,0 ,2),(yxyeyxfx 3 .word 资料可编辑 .1022/1222),()2(yxxyeydxedydxdyYxfXYP 3

    注意事项

    本文(概率论与数理统计考试试卷与答案30354.pdf)为本站会员(得****3)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开