教育专题:教育专题:【精品课件】211合情推理(1).ppt
2.12.1合情推理与演绎推理合情推理与演绎推理2.1.12.1.1合情推理合情推理 3 37 71010 3 3171720201313171730301010 3 37 72020 3 317173030 131317176 6 6 63+33+33+33+3,8 8 8 83+5,3+5,3+5,3+5,101010105+5,5+5,5+5,5+5,100010001000100029+97129+97129+97129+971,1002=139+863,1002=139+863,1002=139+863,1002=139+863,猜想任何一个不小于猜想任何一个不小于猜想任何一个不小于猜想任何一个不小于6 6的的的的偶数都等于两个奇质数的和偶数都等于两个奇质数的和偶数都等于两个奇质数的和偶数都等于两个奇质数的和.数学皇冠上璀璨的明珠数学皇冠上璀璨的明珠数学皇冠上璀璨的明珠数学皇冠上璀璨的明珠哥德巴赫猜想哥德巴赫猜想哥德巴赫猜想哥德巴赫猜想一个规律:一个规律:一个规律:一个规律:偶数奇质数奇质数偶数奇质数奇质数偶数奇质数奇质数偶数奇质数奇质数哥德巴赫猜想的过程:哥德巴赫猜想的过程:具体的材料具体的材料观察分析观察分析猜想出一般性的结论猜想出一般性的结论归纳推理的过程:归纳推理的过程:由某类事物的由某类事物的 具有某些特征具有某些特征,推出该类事物的推出该类事物的 都具有这些特征都具有这些特征的推理的推理,或者由或者由 概括出概括出 的推理的推理,称为称为归纳推理归纳推理(简称归纳简称归纳).).部分对象部分对象全部对象全部对象个别事实个别事实一般结论一般结论 1,3,5,7,由此你猜想出第,由此你猜想出第个数是个数是_.这就是从这就是从部分到整体部分到整体,从从个别到一般个别到一般的的归纳推理归纳推理.统计初步中的用样本估计总体统计初步中的用样本估计总体 通过从总体中抽取通过从总体中抽取部分对象部分对象进进行观测或试验,进而对行观测或试验,进而对整体整体做出推断做出推断.意思是从一片树叶的凋落,知道秋意思是从一片树叶的凋落,知道秋天将要来到天将要来到.比喻由比喻由细微的迹象细微的迹象看出看出整体整体形势形势的变化,由的变化,由部分部分推知推知全体全体.成语成语”一叶知秋一叶知秋”1.已知数列已知数列 的第一项的第一项 =1,且且 (1,2,3,),请归纳出这个数列的通项公式为请归纳出这个数列的通项公式为_.2.2.数一数图中的凸多面体的面数数一数图中的凸多面体的面数数一数图中的凸多面体的面数数一数图中的凸多面体的面数F F、顶点数、顶点数、顶点数、顶点数V V和棱数和棱数和棱数和棱数E,E,然后然后然后然后探求面数探求面数探求面数探求面数F F、顶点数、顶点数、顶点数、顶点数V V和棱数和棱数和棱数和棱数E E之间的关系之间的关系之间的关系之间的关系.四棱柱四棱柱四棱柱四棱柱三棱锥三棱锥三棱锥三棱锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱锥四棱锥四棱锥四棱锥尖顶塔尖顶塔尖顶塔尖顶塔凸多面体凸多面体凸多面体凸多面体面数(面数(面数(面数(F F F F)顶顶顶顶点数(点数(点数(点数(V V V V)棱数(棱数(棱数(棱数(E E E E)四棱柱四棱柱四棱柱四棱柱三棱三棱三棱三棱锥锥锥锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱四棱四棱四棱锥锥锥锥尖尖尖尖顶顶顶顶塔塔塔塔凸多面体凸多面体凸多面体凸多面体面数(面数(面数(面数(F F F F)顶顶顶顶点数(点数(点数(点数(V V V V)棱数(棱数(棱数(棱数(E E E E)四棱柱四棱柱四棱柱四棱柱三棱三棱三棱三棱锥锥锥锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱四棱四棱四棱锥锥锥锥尖尖尖尖顶顶顶顶塔塔塔塔四棱柱四棱柱四棱柱四棱柱6 68 81212凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体695三棱柱三棱柱凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体695三棱柱三棱柱558四棱锥四棱锥凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体695三棱柱三棱柱558四棱锥四棱锥9169尖顶塔尖顶塔6 69 95 59 95 55 58 816169 9凸多面体凸多面体凸多面体凸多面体面数(面数(面数(面数(F F F F)顶顶顶顶点数(点数(点数(点数(V V V V)棱数(棱数(棱数(棱数(E E E E)四棱柱四棱柱四棱柱四棱柱三棱三棱三棱三棱锥锥锥锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱四棱四棱四棱锥锥锥锥尖尖尖尖顶顶顶顶塔塔塔塔6 68 812126 64 44 412128 86 6猜想凸多面体的面数猜想凸多面体的面数猜想凸多面体的面数猜想凸多面体的面数F F、顶点数、顶点数、顶点数、顶点数V V和棱数和棱数和棱数和棱数E E之间的关系式为:之间的关系式为:之间的关系式为:之间的关系式为:FVE2欧拉公式欧拉公式归纳推理的基础归纳推理的基础归纳推理的作用归纳推理的作用归纳推理归纳推理观察、分析观察、分析发现新事实、发现新事实、获得新结论获得新结论由部分到整体、由部分到整体、个别到一般的推理个别到一般的推理注意注意归纳推理的结论不一定成立归纳推理的结论不一定成立数学巩固:1.在数列在数列an中,中,2.试猜想这个数列的通项公式。试猜想这个数列的通项公式。2.12.1合情推理与演绎推理合情推理与演绎推理2.1.12.1.1类比推理类比推理复习复习2.归纳推理的一般步骤归纳推理的一般步骤:(1)通过观察个别情况发现某些相同性质通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的从已知的相同性质中推出一个明确表达的一般性命题一般性命题(猜想猜想).1.什么是归纳推理什么是归纳推理?部分整体部分整体特殊特殊 一般一般从一个传说说起:春秋时代鲁国的公输班(后从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子霉事却使他发明了锯子.他的思路是这样的:他的思路是这样的:茅草是齿形的茅草是齿形的;茅草能割破手茅草能割破手.我需要一种能割断木头的工具;我需要一种能割断木头的工具;它也可以是齿形的它也可以是齿形的.这个推理过程是归纳推理吗?这个推理过程是归纳推理吗?试根据等式的性质猜想不等式的性质。试根据等式的性质猜想不等式的性质。等式的性质:等式的性质:(1)a=ba+c=b+c;(2)a=b ac=bc;(3)a=ba2=b2;等等。等等。猜想不等式的性质:猜想不等式的性质:(1)aba+cb+c;(2)ab acbc;(3)aba2b2;等等。等等。问:这样猜想出的结论是否一定正确?问:这样猜想出的结论是否一定正确?火星火星地球地球相似点相似点:绕太阳运转、绕轴自转、有大气层、有季节变换、大部绕太阳运转、绕轴自转、有大气层、有季节变换、大部分时间的温度适合地球上的某些已知生物的生存等。分时间的温度适合地球上的某些已知生物的生存等。地球上有生命地球上有生命火星上可能有生命火星上可能有生命猜想猜想火星上是否有生命?火星上是否有生命?相似点相似点:由两类对象具有某些类似特征和其中一类对象的由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推某些已知特征,推出另一类对象也具有这些特征的推理称为理称为类比推理类比推理.(.(简称:简称:类比类比)类比推理的定义类比推理的定义:简言之,类比推理是由简言之,类比推理是由特殊到特殊特殊到特殊的推理的推理类比推理的特点类比推理的特点;1.1.类比是从人们已经掌握了的事物的属性类比是从人们已经掌握了的事物的属性,推测正在研究的推测正在研究的事物的属性事物的属性,是是以旧有的认识为基础以旧有的认识为基础,类比出新的结果类比出新的结果.2.2.类比是从一种事物的类比是从一种事物的特殊属性特殊属性推测另一种事物的推测另一种事物的特殊属性特殊属性.3.3.类比的结果是猜测性的类比的结果是猜测性的不一定可靠不一定可靠,但它却有发现的功能但它却有发现的功能.类比推理的一般步骤类比推理的一般步骤:观察、比较观察、比较联想、类推联想、类推猜想新结论猜想新结论例例1、试将平面上的圆与空间的球进行类比、试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定圆的定义:平面内到一个定点的距离等于定长的点的集合长的点的集合.球的定义:到一个定点的距离等于定长的点球的定义:到一个定点的距离等于定长的点的集合的集合.圆圆弦弦直径直径周长周长面积面积球球截面圆截面圆大圆大圆表面积表面积体积体积圆的概念和性质圆的概念和性质球的概念和性质球的概念和性质与圆心距离相等的两弦相等与圆心距离相等的两弦相等与圆心距离不相等的两弦不相与圆心距离不相等的两弦不相等等,距圆心较近的弦较长距圆心较近的弦较长以点以点(x(x0 0,y,y0 0)为圆心为圆心,r,r为半径为半径的圆的方程为的圆的方程为(x-x(x-x0 0)2 2+(y-y+(y-y0 0)2 2=r=r2 2圆心与弦圆心与弦(非直径非直径)中点的连线中点的连线垂直于弦垂直于弦球心与不过球心的截面球心与不过球心的截面(圆面圆面)的圆心的连线垂直于截面的圆心的连线垂直于截面与球心距离相等的两截面面积相等与球心距离相等的两截面面积相等与球心距离不相等的两截面面积不与球心距离不相等的两截面面积不相等相等,距球心较近的面积较大距球心较近的面积较大以点以点(x(x0 0,y,y0 0,z,z0 0)为球心为球心,r,r为半为半径的球的方程为径的球的方程为(x-x(x-x0 0)2 2+(y-+(y-y y0 0)2 2+(z-z+(z-z0 0)2 2=r=r2 2利用圆的性质类比得出球的性质利用圆的性质类比得出球的性质球的体积球的体积球的表面积球的表面积圆的周长圆的周长 圆的面积圆的面积例例2 类比实数的加法和乘法类比实数的加法和乘法,列出它们相似的运算性质列出它们相似的运算性质.类比角度类比角度实数的加法实数的加法实数的乘法实数的乘法运算结果运算结果若若a,b R,则则a+b R运算律运算律(交换律和交换律和结合律结合律)a+b=b+a(a+b)+c=a+(b+c)逆运算逆运算加法的逆运算是减法加法的逆运算是减法,使得使得方程方程a+x=0有唯一解有唯一解x=-a单位元单位元a+0=a若若a,b R,则则ab Rab=ba(ab)c=a(bc)乘法的逆运算是除法乘法的逆运算是除法,使得使得ax=1有唯一解有唯一解x=1/aa1=a通过例通过例1,例,例2你能得到你能得到类比推理的一般模式类比推理的一般模式吗?吗?类比推理的一般模式类比推理的一般模式:所以所以B类事物可能具有性质类事物可能具有性质d.A类事物具有性质类事物具有性质a,b,c,d,B类事物具有性质类事物具有性质a,b,c,(a,b,c与与a,b,c相似或相同)相似或相同)归纳推理和类比推理的共同点归纳推理和类比推理的共同点 归纳推理归纳推理和和类比推理类比推理都是根据已有的事实都是根据已有的事实,经经过观察、分析、比较、联想,再进行归纳、类比,过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为然后提出猜想的推理,我们把它们统称为合情推合情推理理.从具体问从具体问题出发题出发观察、分析、观察、分析、比较、联想比较、联想归纳、归纳、类比类比提出提出猜想猜想合情推理合情推理 类比推理举例类比推理举例构成几何体的元素数目:四面体构成几何体的元素数目:四面体 三角形三角形 例例3 3:类比平面内直角三角形的勾股定理,:类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想试给出空间中四面体性质的猜想a ab bc co oA AB BC Cs s1 1s s2 2s s3 3c c2 2=a=a2 2+b+b2 2S S2 2ABC ABC=S=S2 2AOBAOB+S+S2 2AOCAOC+S+S2 2BOCBOC猜想猜想:例例4 由图由图(1)有面积关系有面积关系:则由图则由图(2)有体积关系有体积关系:图图(1)图图(2)温故知新温故知新:合情推理合情推理归纳推理归纳推理和和类比推理类比推理从具体问从具体问题出发题出发观察、分析观察、分析比较、联想比较、联想提出猜想提出猜想归纳、归纳、类比类比2、归纳推理和类比推理区别?归纳推理和类比推理区别?1 1、分类:、分类:1)1)归纳推理归纳推理:特殊到一般特殊到一般2)2)类比推理类比推理:特殊到特殊特殊到特殊3 3、合情推理的一般步骤、合情推理的一般步骤1、观察、观察1+3=4=22 ,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=,由上述具体事实能得由上述具体事实能得到怎样的结论?到怎样的结论?2、在平面内,若、在平面内,若ac,bc,则则a/b.类比地推广到空间,类比地推广到空间,你会得到你会得到 什么结论?什么结论?并判断正误。并判断正误。正确正确错误错误(可能相交)(可能相交)1+3+(2n-1)=n2在空间中,若在空间中,若,则则/。思考:合情推理总是正确的吗?思考:合情推理总是正确的吗?一、思考题:一、思考题:1 1、什么是演绎推理?、什么是演绎推理?2 2、什么是三段论?、什么是三段论?3 3、合情推理与演绎推理有哪些区别?、合情推理与演绎推理有哪些区别?4 4、你能举出一些在生活和学习中有关演绎、你能举出一些在生活和学习中有关演绎 推理的例子吗?推理的例子吗?新课新课 观察与思考观察与思考1.1.所有的金属都能导电所有的金属都能导电,2.2.一切奇数都不能被一切奇数都不能被2 2整除整除,3.3.三角函数都是周期函数三角函数都是周期函数,铜能够导电铜能够导电.铜是金属铜是金属,(2(2100100+1)+1)不能被不能被2 2整除整除.(2(2100100+1)+1)是奇数是奇数,tan tan 周期函数周期函数 tan tan 三角函数三角函数,是合情推理吗?进一步观察上述例子有几部分组成?各有进一步观察上述例子有几部分组成?各有什么特点?什么特点?大前提大前提小前提小前提结论结论所有金属都能导电所有金属都能导电铜铜是金属是金属太阳系大行星以椭圆太阳系大行星以椭圆轨道绕太阳运行轨道绕太阳运行冥王星冥王星是太阳是太阳系的大行星系的大行星奇数都不能被奇数都不能被2整除整除2007是奇数是奇数2007不能被不能被2整除整除冥王星以椭圆形冥王星以椭圆形轨道绕太阳运行轨道绕太阳运行铜能导电铜能导电 从从一般性的原理一般性的原理出发,推出出发,推出某个特殊某个特殊情况情况下的结论,这种推理称为下的结论,这种推理称为演绎推理演绎推理注:注:演绎推理是由演绎推理是由一般一般到到特殊特殊的推理;的推理;“三段论三段论”是演绎推理的一般模式;包是演绎推理的一般模式;包括括大前提大前提-已知的一般原理;已知的一般原理;小前提小前提-所研究的特殊情况;所研究的特殊情况;结论结论-据一般原理,对特殊情况做出的据一般原理,对特殊情况做出的判断判断 二、演绎推理的定义二、演绎推理的定义三段论的基本格式三段论的基本格式MP(M是是P)SM(S是是M)SP(S是是P)(大前提)(大前提)(小前提)(小前提)(结论)(结论)1.1.所有的金属都能导电所有的金属都能导电,2.2.一切奇数都不能被一切奇数都不能被2 2整除整除,3.3.三角函数都是周期函数三角函数都是周期函数,4.4.全等的三角形面积相等全等的三角形面积相等 所以铜能够导电所以铜能够导电.因为铜是金属因为铜是金属,所以所以(2(2100100+1)+1)不能被不能被2 2整除整除.因为因为(2(2100100+1)+1)是奇数是奇数,所以是所以是tan tan 周期函数周期函数因为因为tan tan 三角函数三角函数,那么三角形那么三角形ABCABC与三角形与三角形A A1 1B B1 1C C1 1面积相等面积相等.如果三角形如果三角形ABCABC与三角形与三角形A A1 1B B1 1C C1 1全等全等,大前提大前提小前提小前提结论结论大前提大前提小前提小前提结论结论大前提大前提小前提小前提结论结论大前提大前提小前提小前提结论结论用三段论的形式写出下列演绎推理用三段论的形式写出下列演绎推理(1)1)矩形的对角线相等,正方形是矩形,所以,矩形的对角线相等,正方形是矩形,所以,正方形的对角线相等。正方形的对角线相等。动手试试:动手试试:每个矩形的对角线相等每个矩形的对角线相等(大前提)(大前提)正方形是矩形正方形是矩形(小前题)(小前题)正方形的对角线相等正方形的对角线相等(结论)(结论)(2)ysinx(x为为R)是周期函数。)是周期函数。三角函数是周期函数三角函数是周期函数(大前提)(大前提)ysinx是三角函数是三角函数(小前题)(小前题)ysinx是周期函数是周期函数(结论)(结论)课堂反馈:演绎推理的结论一定正确吗?课堂反馈:演绎推理的结论一定正确吗?所有金属都能导电所有金属都能导电铜铜是金属是金属太阳系大行星以椭太阳系大行星以椭圆轨道绕太阳运行圆轨道绕太阳运行冥王星冥王星是太阳是太阳系的大行星系的大行星奇数都不能被奇数都不能被2整除整除2007是奇数是奇数2007不能被不能被2整除整除冥王星以椭圆形冥王星以椭圆形轨道绕太阳运行轨道绕太阳运行铜能导电铜能导电大前提大前提小前提小前提结论结论(1)分析下面的例子:)分析下面的例子:在演绎推理中,只要前提和推在演绎推理中,只要前提和推理形式是正确的,结论必定正确。理形式是正确的,结论必定正确。MSP若集合若集合M M的所有元素的所有元素都具有性质都具有性质P P,S S是是M M的一个子集,那么的一个子集,那么S S中所有元素也都具有中所有元素也都具有性质性质P P。所有的金属所有的金属(M)(M)都能够导电都能够导电(P)(P)铜铜(S)(S)是金属是金属(M)(M)铜铜(S)(S)能够导电能够导电(P)(P)M MP PS SM MS SP P例例.如图如图;在锐角三角形在锐角三角形ABCABC中中,AD,ADBC,BEBC,BEAC,AC,D,E D,E是垂足是垂足,求证:求证:ABAB的中点的中点M M到到D,ED,E的距离相等的距离相等.A AD DE EC CM MB B (1)(1)因为有一个内角是直角因为有一个内角是直角的三角形是直角三角形的三角形是直角三角形,在在ABCABC中中,ADBC,ADBC,即即ADB=90ADB=900 0所以所以ABDABD是直角三角形是直角三角形同理同理ABDABD是直角三角形是直角三角形(2)(2)因为直角三角形斜边上的中线等于斜边的一半因为直角三角形斜边上的中线等于斜边的一半,M M是是RtRtABDABD斜边斜边ABAB的中点的中点,DM,DM是斜边上的中线是斜边上的中线所以所以 DM=AB DM=AB同理同理 EM=AB EM=AB所以所以 DM=EM DM=EM大前提大前提小前提小前提结论结论大前提大前提小前提小前提结论结论证明证明:例例:证明函数证明函数f(x)=-xf(x)=-x2 2+2x+2x在在(-(-,1,1上是增函数上是增函数.满足对于任意满足对于任意x x1 1,x,x2 2D,D,若若x x1 1xx2 2,有有f(xf(x1 1)f(x)f(x2 2)成立的函数成立的函数f(x),f(x),是区间是区间D D上的增函数上的增函数.任取任取x x1 1,x,x2 2(-(-,1,1 且且x x1 1xx2,2,f(xf(x1 1)-f(x)-f(x2 2)=(-x)=(-x1 12 2+2x+2x1 1)-(x)-(x2 22 2+2x+2x2 2)=(x=(x2 2-x-x1 1)(x)(x1 1+x+x2 2-2)-2)因为因为x x1 1x0 0 因为因为x x1 1,x,x2 21 1所以所以x x1 1+x+x2 2-20 -20 因此因此f(xf(x1 1)-f(x)-f(x2 2)0,)0,即即f(xf(x1 1)f(x)f(x2 2)所以函数所以函数f(x)=-xf(x)=-x2 2+2x+2x在在(-(-,1,1上是增函数上是增函数.大前提大前提小前提小前提结论结论证明证明:还有其他方法求解吗?还有其他方法求解吗?上面用到的方法是什么方法?上面用到的方法是什么方法?函数单调性的定义法。函数单调性的定义法。例例2 2:证明函数:证明函数f(x)=-xf(x)=-x2 2+2x+2x在在(-,1)(-,1)是增函数。是增函数。大前提大前提:在某个区间(:在某个区间(a,ba,b)内若)内若 ,那么,那么函数函数y=f(x)y=f(x)在这个区间内单调递增;在这个区间内单调递增;请大家都动手试试,加油!相信自己一定行的请大家都动手试试,加油!相信自己一定行的!例例2 2:证明函数:证明函数f(x)=-xf(x)=-x2 2+2x+2x在在(-,1)(-,1)是增函数。是增函数。函数函数f(x)=-xf(x)=-x2 2+2x+2x在在(-,1)(-,1)是增函数。是增函数。大前提大前提:在某个区间(:在某个区间(a,ba,b)内若)内若 ,那么,那么函数函数y=f(x)y=f(x)在这个区间内单调递增;在这个区间内单调递增;小前提小前提结论结论 想一想想一想,做一做:做一做:推理形式正确,但推理结论错误,因为推理形式正确,但推理结论错误,因为大前提错误。大前提错误。因为指数函数因为指数函数 是增函数(是增函数(大前提大前提)而而 是指数函数(是指数函数(小前提小前提)所以所以 是增函数(是增函数(结论结论)(1)1)上面的推理形式正确吗?上面的推理形式正确吗?(2)2)推理的结论正确吗?为什么?推理的结论正确吗?为什么?练习:练习:分析下列推理是否正确,说明为什么?分析下列推理是否正确,说明为什么?(1)(1)(1)(1)自然数是整数,自然数是整数,自然数是整数,自然数是整数,3 3 3 3是自然数,是自然数,是自然数,是自然数,3 3 3 3是整数是整数是整数是整数.大前提错误大前提错误大前提错误大前提错误推理形式错误推理形式错误推理形式错误推理形式错误(2)(2)(2)(2)整数是自然数,整数是自然数,整数是自然数,整数是自然数,-3-3-3-3是整数,是整数,是整数,是整数,-3-3-3-3是自然数是自然数是自然数是自然数.(4)(4)(4)(4)自然数是整数,自然数是整数,自然数是整数,自然数是整数,3 3 3 3是整数,是整数,是整数,是整数,3 3 3 3是自然数是自然数是自然数是自然数.(3)(3)(3)(3)自然数是整数,自然数是整数,自然数是整数,自然数是整数,-3-3-3-3是自然数,是自然数,是自然数,是自然数,-3-3-3-3是整数是整数是整数是整数.小前提错误小前提错误小前提错误小前提错误课堂小结课堂小结v1.什么是演绎推理?什么是演绎推理?v2.什么是三段论,它的格式是怎样的?什么是三段论,它的格式是怎样的?v3.合情推理和演绎推理有什么联系和区别?合情推理和演绎推理有什么联系和区别?v4.通过这节课的学习,我们有什么收获和提升?通过这节课的学习,我们有什么收获和提升?合情推理与演绎推理的区别合情推理与演绎推理的区别区区别别推理推理形式形式推理推理结论结论联系联系合情推理合情推理归纳推理归纳推理类比推理类比推理由由部分到整体、个部分到整体、个别到一般别到一般的推理。的推理。由由特殊到特殊特殊到特殊的的推理。推理。结论不一定正确,有待进一结论不一定正确,有待进一步证明。步证明。演绎推理演绎推理由由一般到特殊一般到特殊的的推理。推理。在大前提、小前提在大前提、小前提和推理形式都正确和推理形式都正确的前提下,得到的的前提下,得到的结论一定正确。结论一定正确。合情推理的结论需要演绎推理的验证,而演绎合情推理的结论需要演绎推理的验证,而演绎推理的方向和思路一般是通过合情推理获得的。推理的方向和思路一般是通过合情推理获得的。