北师大版——初中数学第五册教案.pdf
北师大版初中数学第五册教案 分解因式法 教学目标:1、会用分解因式法(提公因式,公式法)解某些简洁的数字系数的一元二次方程。2、能依据详细的一元一次方程的特征敏捷选择方法,体会解决问题方法的多样性。教学程序:一、复习:1、一元二次方程的求根公式:x=(b24ac0)2、分别用配方法、公式法解方程:x23x+2=0 3、分解因式:(1)5 x24x(2)x2x(x2)(3)(x+1)225 二、新授:1、分析小颖、小明、小亮的解法:小颖:用公式法解正确;小明:两边约去 x,是非同解变形,结果丢掉一根,错误。小亮:利用“假如 ab=0,那么 a=0 或 b=0”来求解,正确。2、分解因式法:利用分解因式来解一元二次方程的方法叫分解因式法。3、例题讲析:例:解以下方程:(1)5x2=4x (2)x2=x(x2)解:(1)原方程可变形为:5x24x=0 x(5x4)=0 x=0 或 5x=4=0 x1=0 或 x2=(2)原方程可变形为 x2x(x2)=0 (x2)(1x)=0 x2=0 或 1x=0 x1=2,x2=1 4、想一想 你能用分解因式法简洁方程 x24=0 (x+1)225=0 吗?解:x24=0 (x+1)225=0 x222=0 (x+1)252=0 (x+2)(x2)=0 (x+1+5)(x+15)=0 x+2=0 或 x2=0 x+6=0 或 x4=0 x1=2,x2=2 x1=6,x2=4 三、稳固:练习:P62 随堂练习 1、2 四、小结:(1)在一元二次方程的一边为 0,而另一边易于分解成两个一次因式时,就可用分解因式法来解。(2)分解因式时,用公式法提公式因式法 五、作业:P62 习题 2.7 1、2 六、教学后记:分解因式法 教学目标:1、会用分解因式法(提公因式,公式法)解某些简洁的数字系数的一元二次方程。2、能依据详细的一元一次方程的特征敏捷选择方法,体会解决问题方法的多样性。教学程序:一、复习:1、一元二次方程的求根公式:x=(b24ac0)2、分别用配方法、公式法解方程:x23x+2=0 3、分解因式:(1)5 x24x(2)x2x(x2)(3)(x+1)225 二、新授:1、分析小颖、小明、小亮的解法:小颖:用公式法解正确;小明:两边约去 x,是非同解变形,结果丢掉一根,错误。小亮:利用“假如 ab=0,那么 a=0 或 b=0”来求解,正确。2、分解因式法:利用分解因式来解一元二次方程的方法叫分解因式法。3、例题讲析:例:解以下方程:(1)5x2=4x (2)x2=x(x2)解:(1)原方程可变形为:5x24x=0 x(5x4)=0 x=0 或 5x=4=0 x1=0 或 x2=(2)原方程可变形为 x2x(x2)=0 (x2)(1x)=0 x2=0 或 1x=0 x1=2,x2=1 4、想一想 你能用分解因式法简洁方程 x24=0 (x+1)225=0 吗?解:x24=0 (x+1)225=0 x222=0 (x+1)252=0 (x+2)(x2)=0 (x+1+5)(x+15)=0 x+2=0 或 x2=0 x+6=0 或 x4=0 x1=2,x2=2 x1=6,x2=4 三、稳固:练习:P62 随堂练习 1、2 四、小结:(1)在一元二次方程的一边为 0,而另一边易于分解成两个一次因式时,就可用分解因式法来解。(2)分解因式时,用公式法提公式因式法 五、作业:P62 习题 2.7 1、2 六、教学后记: