欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    初中数学(几何)知识点总结.pdf

    • 资源ID:84285301       资源大小:749.29KB        全文页数:14页
    • 资源格式: PDF        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    初中数学(几何)知识点总结.pdf

    第 1 页 初中数学几何知识点总结 图形的初步认识 考点一、直线、射线和线段 1、几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。立体图形:有些几何图形的各个局部不都在同一平面内,它们是立体图形。平面图形:有些几何图形的各个局部都在同一平面内,它们是平面图形。2、点、线、面、体 1几何图形的组成 点:线和线相交的地方是点,它是几何图形中最根本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。2点动成线,线动成面,面动成体。3、直线的概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。4、射线的概念:直线上一点和它一旁的局部叫做射线。这个点叫做射线的端点。5、线段的概念:直线上两个点和它们之间的局部叫做线段。这两个点叫做线段的端点。6、点、直线、射线和线段的表示 在几何里,我们常用字母表示图形。一个点可以用一个大写字母表示。一条直线可以用一个小写字母表示。一条射线可以用端点和射线上另一点来表示。一条线段可用它的端点的两个大写字母来表示。注意:1表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。2直线和射线无长度,线段有长度。3直线无端点,射线有一个端点,线段有两个端点。4点和直线的位置关系有线面两种:点在直线上,或者说直线经过这个点。点在直线外,或者说直线不经过这个点。7、直线的性质 1直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。2过一点的直线有无数条。3直线是是向两方面无限延伸的,无端点,不可度量,不能比拟大小。4直线上有无穷多个点。5两条不同的直线至多有一个公共点。8、线段的性质 1线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。2连接两点的线段的长度,叫做这两点的距离。3线段的中点到两端点的距离相等。4线段的大小关系和它们的长度的大小关系是一致的。9、线段垂直平分线的性质定理及逆定理 垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。考点二、角 1、角的相关概念 有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。当角的两边在一条直线上时,组成的角叫做平角。第 2 页 平角的一半叫做直角;小于直角的角叫做锐角;大于直角且小于平角的角叫做钝角。如果两个角的和是一个直角,那么这两个角叫做互为余角,其中一个角叫做另一个角的余角。如果两个角的和是一个平角,那么这两个角叫做互为补角,其中一个角叫做另一个角的补角。2、角的表示 角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有一下四种表示方法:用数字表示单独的角,如1,2,3 等。用小写的希腊字母表示单独的一个角,如,等。用一个大写英文字母表示一个独立在一个顶点处只有一个角的角,如B,C 等。用三个大写英文字母表示任一个角,如BAD,BAE,CAE 等。注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。3、角的度量 角的度量有如下规定:把一个平角 180 等分,每一份就是 1 度的角,单位是度,用“表示,1 度记作“1,n 度记作“n。把 1的角 60 等分,每一份叫做 1 分的角,1 分记作“1。把 1 的角 60 等分,每一份叫做 1 秒的角,1 秒记作“1。1=60=60 4、角的性质 1角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。;2角的大小可以度量,可以比拟;3角可以参与运算。5、角的平分线及其性质:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。角的平分线有下面的性质定理:1角平分线上的点到这个角的两边的距离相等。2到一个角的两边距离相等的点在这个角的平分线上。考点三、相交线 1、相交线中的角 两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。临补角互补,对顶角相等。直线 AB,CD 与 EF 相交或者说两条直线 AB,CD 被第三条直线 EF 所截,构成八个角。其中1 与5 这两个角分别在 AB,CD 的上方,并且在 EF 的同侧,像这样位置相同的一对角叫做同位角;3 与5 这两个角都在 AB,CD之间,并且在 EF 的异侧,像这样位置的两个角叫做内错角;3 与6 在直线AB,CD 之间,并侧在 EF 的同侧,像这样位置的两个角叫做同旁内角。2、垂线 两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。直线 AB,CD 互相垂直,记作“ABCD或“CDAB),读作“AB 垂直于 CD或“CD 垂直于 AB。垂线的性质:性质 1:过一点有且只有一条直线与直线垂直;性质 2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。考点四、平行线 1、平行线的概念 在同一个平面内,不相交的两条直线叫做平行线。平行用符号“表示,如“ABCD,读作“AB 平行于CD。同一平面内,两条直线的位置关系只有两种:相交或平行。注意:1平行线是无限延伸的,无论怎样延伸也不相交。2当遇到线段、射线平行时,指的是线段、射线所在的直线平行。2、平行线公理及其推论 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。第 3 页 3、平行线的判定:平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。平行线的两条判定定理:1两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。2两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。补充平行线的判定方法:1平行于同一条直线的两直线平行。2垂直于同一条直线的两直线平行。3平行线的定义。4、平行线的性质 1两直线平行,同位角相等。2两直线平行,内错角相等。3两直线平行,同旁内角互补。考点五、命题、定理、证明 1、命题的概念:判断一件事情的语句,叫做命题。理解:命题的定义包括两层含义:1命题必须是个完整的句子;2这个句子必须对某件事情做出判断。2、命题的分类按正确、错误与否分 真命题正确的命题 命题 假命题错误的命题 所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。3、公理 人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。4、定理:用推理的方法判断为正确的命题叫做定理。5、证明:判断一个命题的正确性的推理过程叫做证明。6、证明的一般步骤 1根据题意,画出图形。2根据题设、结论、结合图形,写出、求证。3经过分析,找出由推出求证的途径,写出证明过程。考点六、投影与视图 1、投影 投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。平行投影:由平行光线如太阳光线形成的投影称为平行投影。中心投影:由同一点发出的光线所形成的投影称为中心投影。2、视图 当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。物体的三视图特指主视图、俯视图、左视图。主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。三角形 考点一、三角形 1 三角形的概念:由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。2、三角形中的主要线段 1三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。2在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。3从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线简称三角形的高。3、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。第 4 页 4、三角形的特性与表示 三角形有下面三个特性:1三角形有三条线段 2三条线段不在同一直线上 三角形是封闭图形 3首尾顺次相接 三角形用符号“表示,顶点是 A、B、C 的三角形记作“ABC,读作“三角形 ABC。5、三角形的分类 三角形按边的关系分类如下:不等边三角形 三角形 底和腰不相等的等腰三角形 等腰三角形 等边三角形 三角形按角的关系分类如下:直角三角形有一个角为直角的三角形 三角形 锐角三角形三个角都是锐角的三角形 斜三角形 钝角三角形有一个角为钝角的三角形 把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。6、三角形的三边关系定理及推论 1三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。2三角形三边关系定理及推论的作用:判断三条线段能否组成三角形。当两边时,可确定第三边的范围。证明线段不等关系。7、三角形的内角和定理及推论 三角形的内角和定理:三角形三个内角和等于 180。推论:直角三角形的两个锐角互余。三角形的一个外角等于和它不相邻的来两个内角的和。三角形的一个外角大于任何一个和它不相邻的内角。注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。8、三角形的面积:三角形的面积=21底高 考点二、全等三角形 1、全等三角形的概念 能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。2、全等三角形的表示和性质 全等用符号“表示,读作“全等于。如ABCDEF,读作“三角形 ABC 全等于三角形 DEF。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、三角形全等的判定 三角形全等的判定定理:1边角边定理:有两边和它们的夹角对应相等的两个三角形全等可简写成“边角边或“SAS 2角边角定理:有两角和它们的夹边对应相等的两个三角形全等可简写成“角边角或“ASA 3边边边定理:有三边对应相等的两个三角形全等可简写成“边边边或“SSS。直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有 HL 定理斜边、直角边定理:有斜边和一条直角边对应相等的两个直角三角形全等可简写成“斜边、直角边或“HL 第 5 页 4、全等变换 只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。全等变换包括一下三种:1平移变换:把图形沿某条直线平行移动的变换叫做平移变换。2对称变换:将图形沿某直线翻折 180,这种变换叫做对称变换。3旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形 1、等腰三角形的性质 1等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等简称:等边对等角 推论 1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。推论 2:等边三角形的各个角都相等,并且每个角都等于 60。2等腰三角形的其他性质:等腰直角三角形的两个底角相等且等于 45 等腰三角形的底角只能为锐角,不能为钝角或直角,但顶角可为钝角或直角。等腰三角形的三边关系:设腰长为 a,底边长为 b,那么2ba 等腰三角形的三角关系:设顶角为顶角为A,底角为B、C,那么A=1802B,B=C=2180A 2、等腰三角形的判定 等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等简称:等角对等边。这个判定定理常用于证明同一个三角形中的边相等。推论 1:三个角都相等的三角形是等边三角形 推论 2:有一个角是 60的等腰三角形是等边三角形。推论 3:在直角三角形中,如果一个锐角等于 30,那么它所对的直角边等于斜边的一半。等腰三角形的性质与判定 等腰三角形性质 等腰三角形判定 中线 1、等腰三角形底边上的中线垂直底边,平分顶角;2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。1、两边上中线相等的三角形是等腰三角形;2、如果一个三角形的一边中线垂直这条边平分这个边的对角,那么这个三角形是等腰三角形 角平分线 1、等腰三角形顶角平分线垂直平分底边;2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。1、如果三角形的顶角平分线垂直于这个角的对边平分对边,那么这个三角形是等腰三角形;2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。高线 1、等腰三角形底边上的高平分顶角、平分底边;2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。1、如果一个三角形一边上的高平分这条边平分这条边的对角,那么这个三角形是等腰三角形;2、有两条高相等的三角形是等腰三角形。角 等边对等角 等角对等边 边 底的一半腰长周长的一半 两边相等的三角形是等腰三角形 4、三角形中的中位线 连接三角形两边中点的线段叫做三角形的中位线。1三角形共有三条中位线,并且它们又重新构成一个新的三角形。2要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:第 6 页 位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论 1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论 2:三条中位线将原三角形分割成四个全等的三角形。结论 3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论 4:三角形一条中线和与它相交的中位线互相平分。结论 5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。第十章 四边形 考点一、四边形的相关概念 1、四边形:在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。2、凸四边形:把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。3、对角线:在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。4、四边形的不稳定性:三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性。但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。5、四边形的内角和定理及外角和定理 四边形的内角和定理:四边形的内角和等于 360。四边形的外角和定理:四边形的外角和等于 360。多边形的内角和定理:n 边形的内角和)2(n180;多边形的外角和定理:任意多边形的外角和 360 6、多边形的对角线条数的计算公式:设多边形的边数为 n,那么多边形的对角线条数为2)3(nn。考点二、平行四边形 1、平行四边形的概念:两组对边分别平行的四边形叫做平行四边形。平行四边形用符号“ABCD表示,如平行四边形 ABCD 记作“ABCD,读作“平行四边形 ABCD。2、平行四边形的性质 1平行四边形的邻角互补,对角相等。2平行四边形的对边平行且相等。推论:夹在两条平行线间的平行线段相等。3平行四边形的对角线互相平分。4假设一直线过平行四边形两对角线的交点,那么这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。3、平行四边形的判定 1定义:两组对边分别平行的四边形是平行四边形 2定理 1:两组对角分别相等的四边形是平行四边形;定理 2:两组对边分别相等的四边形是平行四边形;定理 3:对角线互相平分的四边形是平行四边形;定理 4:一组对边平行且相等的四边形是平行四边形 4、两条平行线的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。5、平行四边形的面积:S平行四边形=底边长高=ah 考点三、矩形 1、矩形的概念 有一个角是直角的平行四边形叫做矩形。2、矩形的性质 1具平行四边形的一切性质;2矩形的四个角都是直角;3矩形的对角线相等;4矩形是轴对称图形 3、矩形的判定 1定义:有一个角是直角的平行四边形是矩形 2定理 1:有三个角是直角的四边形是矩形;定理 2:对角线相等的平行四边形是矩形 4、矩形的面积:S矩形=长宽=ab 第 7 页 考点四、菱形 1、菱形的概念 有一组邻边相等的平行四边形叫做菱形 2、菱形的性质 1具有平行四边形的一切性质;2菱形的四条边相等;3菱形的对角线互相垂直,并且每一条对角线平分一组对角;4菱形是轴对称图形 3、菱形的判定 1定义:有一组邻边相等的平行四边形是菱形 2定理 1:四边都相等的四边形是菱形;定理 2:对角线互相垂直的平行四边形是菱形 4、菱形的面积:S菱形=底边长高=两条对角线乘积的一半 考点五、正方形 1、正方形的概念:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。2、正方形的性质 1具有平行四边形、矩形、菱形的一切性质 2正方形的四个角都是直角,四条边都相等 3正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角 4正方形是轴对称图形,有 4 条对称轴 5正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形 6正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。3、正方形的判定 1判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。先证它是菱形,再证有一个角是直角。2判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形或矩形;最后证明它是矩形或菱形 4、正方形的面积:设正方形边长为 a,对角线长为 b,S正方形=222ba 考点六、梯形 1、梯形的相关概念 一组对边平行而另一组对边不平行的四边形叫做梯形。梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。两腰相等的梯形叫做等腰梯形。一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下:一般梯形 梯形 直角梯形 特殊梯形 等腰梯形 2、梯形的判定 1定义:一组对边平行而另一组对边不平行的四边形是梯形。2一组对边平行且不相等的四边形是梯形。3、等腰梯形的性质 1等腰梯形的两腰相等,两底平行。3等腰梯形的对角线相等。4等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。4、等腰梯形的判定 1定义:两腰相等的梯形是等腰梯形 2定理:在同一底上的两个角相等的梯形是等腰梯形 3对角线相等的梯形是等腰梯形。第 8 页 5、梯形的面积 1如图,DEABCDSABCD)(21梯形 2梯形中有关图形的面积:BACABDSS;BOCAODSS;BCDADCSS 6、梯形中位线定理 梯形中位线平行于两底,并且等于两底和的一半。第十一章 解直角三角形 考点一、直角三角形的性质 1、直角三角形的两个锐角互余:可表示如下:C=90A+B=90 2、在直角三角形中,30角所对的直角边等于斜边的一半。A=30 可表示如下:BC=21AB C=90 3、直角三角形斜边上的中线等于斜边的一半 ACB=90 可表示如下:CD=21AB=BD=AD D 为 AB 的中点 4、勾股定理 直角三角形两直角边 a,b 的平方和等于斜边 c 的平方,即222cba 5、摄影定理 在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项 ACB=90 BDADCD2 ABADAC2 CDAB ABBDBC2 6、常用关系式 由三角形面积公式可得:ABCD=ACBC 考点二、直角三角形的判定 1、有一个角是直角的三角形是直角三角形。2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。3、勾股定理的逆定理:如果三角形的三边长 a,b,c 有关系222cba,那么这个三角形是直角三角形。考点三、锐角三角函数的概念 1、如图,在ABC 中,C=90 锐 角 A 的 对 边 与 斜 边 的 比 叫 做 A 的 正 弦,记 为 sinA,即casin斜边的对边AA 锐 角 A 的 邻 边 与 斜 边 的 比 叫 做 A 的 余 弦,记 为 cosA,即cbcos斜边的邻边AA 第 9 页 锐角 A 的对边与邻边的比叫做A 的正切,记为 tanA,即batan的邻边的对边AAA 锐角 A 的邻边与对边的比叫做A 的余切,记为 cotA,即abcot的对边的邻边AAA 2、锐角三角函数的概念 锐角 A 的正弦、余弦、正切、余切都叫做A 的锐角三角函数 3、一些特殊角的三角函数值 三角函数 0 30 45 60 90 sin 0 21 22 23 1 cos 1 23 22 21 0 tan 0 33 1 3 不存在 cot 不存在 3 1 33 0 4、各锐角三角函数之间的关系 1互余关系:sinA=cos(90A),cosA=sin(90A);tanA=cot(90A),cotA=tan(90A)2平方关系:1cossin22AA 3倒数关系:tanAtan(90A)=1 4弦切关系:tanA=AAcossin 5、锐角三角函数的增减性 当角度在 090之间变化时,1正弦值随着角度的增大或减小而增大或减小;2余弦值随着角度的增大或减小而减小或增大;3正切值随着角度的增大或减小而增大或减小;4余切值随着角度的增大或减小而减小或增大 考点四、解直角三角形 35 1、解直角三角形的概念 在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的元素求出所有未知元素的过程叫做解直角三角形。2、解直角三角形的理论依据 在 RtABC 中,C=90,A,B,C 所对的边分别为 a,b,c 1三边之间的关系:222cba勾股定理 2锐角之间的关系:A+B=90 3 边角之间的关系:baBabBcaBcbBabAbaAcbAcaAcot,tan,cos,sin;cot,tan,cos,sin 第十二章 圆 第 10 页 考点一、圆的相关概念 1、圆的定义 在一个个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径。2、圆的几何表示:以点 O 为圆心的圆记作“O,读作“圆 O 考点二、弦、弧等与圆有关的定义 1弦:连接圆上任意两点的线段叫做弦。如图中的 AB 2直径:经过圆心的弦叫做直径。如途中的 CD直径等于半径的 2 倍。3半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。4弧、优弧、劣弧 圆上任意两点间的局部叫做圆弧,简称弧。弧用符号“表示,以 A,B 为端点的弧记作“,读作“圆弧 AB或“弧 AB。大于半圆的弧叫做优弧多用三个字母表示;小于半圆的弧叫做劣弧多用两个字母表示 考点三、垂径定理及其推论 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论 1:1平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧。2弦的垂直平分线经过圆心,并且平分弦所对的两条弧。3平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。推论 2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为:过圆心 垂直于弦 直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧 考点四、圆的对称性 3 分 1、圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。2、圆的中心对称性:圆是以圆心为对称中心的中心对称图形。考点五、弧、弦、弦心距、圆心角之间的关系定理 1、圆心角:顶点在圆心的角叫做圆心角。2、弦心距:从圆心到弦的距离叫做弦心距。3、弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。考点六、圆周角定理及其推论 1、圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推论 2:半圆或直径所对的圆周角是直角;90的圆周角所对的弦是直径。推论 3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。考点七、点和圆的位置关系 设O 半径 r,点 P 到圆心距离为 d,那么:dr点 P 在O外。考点八、过三点的圆 1、过三点的圆:不在同一直线上的三个点确定一个圆。2、三角形的外接圆:经过三角形的三个顶点的圆叫做三角形的外接圆。3、三角形的外心:三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。4、圆内接四边形性质四点共圆的判定条件:圆内接四边形对角互补。考点九、反证法 第 11 页 先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。考点十、直线与圆的位置关系 直线和圆有三种位置关系,具体如下:1相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;2相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,3相离:直线和圆没有公共点时,叫做直线和圆相离。假设O 半径 r,圆心 O 到直线 l 距离 d:直线 l 与O 相交dr。考点十一、切线的判定和性质 1、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。2、切线的性质定理:圆的切线垂直于经过切点的半径。考点十二、切线长定理 1、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。2、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。考点十三、三角形的内切圆 1、三角形的内切圆:与三角形的各边都相切的圆叫做三角形的内切圆。2、三角形的内心:三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。考点十四、圆和圆的位置关系 1、圆和圆的位置关系 如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。如果两个圆有两个公共点,那么就说这两个圆相交。2、圆心距:两圆圆心的距离叫做两圆的圆心距。3、圆和圆位置关系的性质与判定 设两圆的半径分别为 R 和 r,圆心距为 d,那么 两圆外离dR+r;两圆外切d=R+r;两圆相交R-rdr;两圆内含dr 4、两圆相切、相交的重要性质 如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。考点十五、正多边形和圆 1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形。2、正多边形和圆的关系 只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。考点十六、与正多边形有关的概念 1、正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。2、正多边形的半径:正多边形的外接圆的半径叫做这个正多边形的半径。3、正多边形的边心距:正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。4、中心角:正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。考点十七、正多边形的对称性 1、正多边形轴对称性:正多边形都是轴对称图形。一个正 n 边形共 n 条对称轴,每条对称轴都过正 n 边形中心。2、正多边形的中心对称性:边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。3、正多边形的画法:先用量角器或尺规等分圆,再做正多边形。考点十八、弧长和扇形面积 1、弧长公式:n的圆心角所对的弧长 l 的计算公式为180rnl 2、扇形面积公式:lRRnS213602扇,其中 n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长。3、圆锥的侧面积:rlrlS221其中 l 是圆锥的母线长,r 是圆锥的地面半径。第 12 页 补充:此处为大纲要求外的知识,但对开发学生智力,改善学生数学思维模式有很大帮助 1、相交弦定理 O 中,弦 AB 与弦 CD 相交与点 E,那么 AEBE=CEDE 2、弦切角定理 弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。即:BAC=ADC 3、切割线定理 PA 为O 切线,PBC 为O 割线,那么PCPBPA2 第十三章 图形的变换 考点一、平移 1、定义:把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。2、性质 1平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动 2连接各组对应点的线段平行或在同一直线上且相等。考点二、轴对称、1、定义:把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。2、性质 1关于某条直线对称的两个图形是全等形。2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。3、判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。4、轴对称图形:把一个图形沿着某条直线折叠,如果直线两旁的局部能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。考点三、旋转 1、定义:把一个图形绕某点 O 转动一个角度的图形变换叫做旋转,其中 O 叫做旋转中心,转动的角叫做旋转角。2、性质 1对应点到旋转中心的距离相等。2对应点与旋转中心所连线段的夹角等于旋转角。考点四、中心对称 1、定义:把一个图形绕着某一个点旋转 180,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。2、性质 1关于中心对称的两个图形是全等形。2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。3关于中心对称的两个图形,对应线段平行或在同一直线上且相等。3、判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。4、中心对称图形 把一个图形绕某一个点旋转 180,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。考点五、坐标系中对称点的特征 1、关于原点对称的点的特征 两个点关于原点对称时,它们的坐标的符号相反,即点 Px,y关于原点的对称点为 P-x,-y 2、关于 x 轴对称的点的特征 两个点关于 x 轴对称时,它们的坐标中,x 相等,y 的符号相反,即点 Px,y关于 x 轴的对称点为 Px,-y 第 13 页 3、关于 y 轴对称的点的特征 两个点关于 y 轴对称时,它们的坐标中,y 相等,x 的符号相反,即点 Px,y关于 y 轴的对称点为 P-x,y 第十四章 图形的相似 考点一、比例线段 1、比例线段的相关概念 如果选用同一长度单位量得两条线段 a,b 的长度分别为 m,n,那么就说这两条线段的比是,nmba或写成 a:b=m:n,在两条线段的比 a:b 中,a 叫做比的前项,b 叫做比的后项。在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,dcba,简称比例线段 假设四条 a,b,c,d 满足或 a:b=c:d,那么 a,b,c,d 叫做组成比例的项,线段 a,d 叫做比例外项,线段 b,c 叫做比例内项,线段的 d 叫做 a,b,c 的第四比例项。如果作为比例内项的是两条相同的线段,即cbba或 a:b=b:c,那么线段 b 叫做线段 a,c 的比例中项。2、比例的性质 1根本性质:a:b=c:dad=bc a:b=b:cacb 2 2更比性质交换比例的内项或外项 dbca交换内项 dcba acbd交换外项 abcd同时交换内项和外项 3反比性质交换比的前项、后项:cdabdcba 4合比性质:ddcbbadcba 5等比性质:banfdbmecanfdbnmfedcba)0(3、黄金分割 把线段 AB 分成两条线段 AC,BCACBC,并且使 AC 是 AB 和 BC 的比例中项,叫做把线段 AB 黄金分割,点 C 叫做线段 AB 的黄金分割点,其中 AC=215 AB0.618AB 考点二、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例。推论:1平行于三角形一边的直线截其他两边或两边的延长线,所得的对应线段成比例。逆定理:如果一条直线截三角形的两边或两边的延长线所得的对应线段成比例,那么这条直线平行于三角形的第三边。2平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。考点三、相似三角形 1、相似三角形的概念 第 14 页 对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“来表示,读作“相似于。相似三角形对应边的比叫做相似比或相似系数。2、相似三角形的根本定理 平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似。用数学语言表述如下:DEBC,ADEABC 相似三角形的等价关系:1反身性:对于任一ABC,都有ABCABC;2对称性:假设ABCABC,那么ABCABC 3传递性:假设ABCABC,并且ABCABC,那么ABCABC。3、三角形相似的判定 1三角形相似的判定方法 定义法:对应角相等,对应边成比例的两个三角形相似 平行法:平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似 判定定理 1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。判定定理 2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。判定定理 3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似 2直角三角形相似的判定方法 以上各种判定方法均适用 定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。4、相似三角形的性质 1相似三角形的对应角相等,对应边成比例;2相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比;3相似三角形周长的比等于相似比;4相似三角形面积的比等于相似比的平方。5、相似多边形 1如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比或相似系数 2相似多边形的性质 相似多边形的对应角相等,对应边成比例;相似多边形周长的比、对应对角线的比都等于相似比;相似多边形中的对应三角形相似,相似比等于相似多边形的相似比;相似多边形面积的比等于相似比的平方 6、位似图形 如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似

    注意事项

    本文(初中数学(几何)知识点总结.pdf)为本站会员(深夜****等你...)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开