细菌和病毒的遗传精选PPT.ppt
关于细菌和病毒的遗传第1页,讲稿共32张,创作于星期二根据寄主的不同把病毒分为植物病毒、动物病毒和细菌病毒。细菌病毒又叫噬菌体(bacteriophage),它是目前研究比较清楚的一种病毒。真核生物的基因重组是通过减数分裂实现的,而原核生物的细菌和既不是原核生物又不是真核生物的病毒,它们不进行减数分裂,但也能进行基因重组。第2页,讲稿共32张,创作于星期二第五章第五章 细菌和病毒的遗传细菌和病毒的遗传第一节第一节第一节第一节 细菌和病毒遗传研究的意义细菌和病毒遗传研究的意义细菌和病毒遗传研究的意义细菌和病毒遗传研究的意义第二节第二节 噬菌体的遗传分析噬菌体的遗传分析第三节第三节 细菌的遗传分析细菌的遗传分析 第3页,讲稿共32张,创作于星期二第一节第一节 细菌和病毒遗传研究的意义细菌和病毒遗传研究的意义第4页,讲稿共32张,创作于星期二第二节第二节 噬菌体的遗传分析噬菌体的遗传分析一、噬菌体的结构与繁殖一、噬菌体的结构与繁殖二、二、T2噬菌体的基因重组噬菌体的基因重组第5页,讲稿共32张,创作于星期二一、噬菌体的结构与繁殖一、噬菌体的结构与繁殖形态:蝌蚪形、微球形、细线形等。结构:E.coliT系列如T1、T2、T3、T4-T7等为蝌蚪形,它们的结构相似。分类:烈性噬菌体烈性噬菌体(virulentphage),如E.coli的T偶数列噬菌体温和型噬菌体温和型噬菌体(temperatephage),如、P1和80噬菌体第6页,讲稿共32张,创作于星期二1、烈性噬菌体的繁殖、烈性噬菌体的繁殖图图75 烈性噬菌体(烈性噬菌体(T4)的繁殖)的繁殖第7页,讲稿共32张,创作于星期二概念:概念:噬菌斑噬菌斑:把对噬菌体敏感的细菌和噬菌体混合培养在琼脂培养基上,未受侵染的细菌迅速生长,形成菌落(colony),而受侵染的细菌裂解(lysis),再侵染邻近细菌使之再裂解,在长满菌落的不透明培养基上,会出现肉眼可见的透明的斑点,叫噬菌斑。基因型不同的噬菌体,产生的噬菌斑大小和形态不同,寄主范围(hostrange)也可能不同,根据这些性状可以加以区别。第8页,讲稿共32张,创作于星期二2、温和型噬菌体的繁殖、温和型噬菌体的繁殖图图76 噬菌体的溶源性周期和裂解周期噬菌体的溶源性周期和裂解周期概念:概念:溶源性(lysogeny)周期:原噬菌体(prophage):溶源性细菌:溶源性细菌对同一种噬菌体的侵染是免疫的。噬菌体感染细菌后,通过交换整合到细菌染色体上,而P1噬菌体并不整合到细菌染色体上,但它们都是溶原性细菌,属温和型噬菌体。温和型噬菌体多数情况下,进行溶源性周期,但在外界因素影响下,也能进入裂解周期第9页,讲稿共32张,创作于星期二二、二、T2噬菌体的基因重组噬菌体的基因重组赫尔歇(Hershey)对T2噬菌体的基因重组作了研究。研究的性状是噬菌斑的大小和寄主范围(hostrange)。野生型r-小噬菌斑;突变型r-大噬菌斑;野生型h-只能感染E.coli的B品系;突变型h-既能感染B品系,又能感染B2品系。噬菌体杂交:两种不同基因型的噬菌体在同一细菌体内的基因重组。第10页,讲稿共32张,创作于星期二hr+h+r即同时感染B品系,DNA复制后可能配对,hr之间可能发生交换hr+h+rhr+h+r裂解后接种在同时含有B和B/2系的培养基上hr+h+rhrh+r+透明、小斑半透明、大斑透明、大斑半透明、小斑亲型重组型第11页,讲稿共32张,创作于星期二重组型噬菌斑数交换值=100总噬菌斑数去掉即为两基因(h、r)之间的遗传距离第12页,讲稿共32张,创作于星期二第三节第三节 细菌的遗传分析细菌的遗传分析细菌之间基因重组的方式主要有以下四种:细菌之间基因重组的方式主要有以下四种:一、转化一、转化 二、接合二、接合 三、性导三、性导 四、转导四、转导第13页,讲稿共32张,创作于星期二一、转化一、转化转化(transformation):指一种细菌或细胞通过细胞膜吸收外源DNA(供体DNA),并通过重组将外源DNA整合(参入)到自己的基因组中,从而表现出供体(donor)遗传性状的现象。接受供体遗传物质的细胞称为受体(receptor)。只有当整合的DNA片段产生新的表现型时,才能测知转化的发生。第14页,讲稿共32张,创作于星期二转化现象最初是由格里费斯(Griffith,F.)在1928年研究肺炎双球菌时发现的。肺炎双球菌有两种类型:(1)光滑型(S型):被一层多糖类的荚膜所保护,有毒性,在培养基上形成光滑的菌落。(2)粗糙型(R型):没有荚膜,没有毒性,形成粗糙型菌落.第15页,讲稿共32张,创作于星期二根据血清学反应,分成许多抗原型:S、S、S、R、R.转化试验:转化试验:无毒的R型有毒的S型R型S型(加热杀死)注入加热(65)杀死再注入混合后注入一个体内老鼠老鼠老鼠不死亡不死亡死亡RR型细菌重现型细菌重现 无无SS型菌重现型菌重现 有少数有少数SS型菌重现型菌重现第16页,讲稿共32张,创作于星期二第17页,讲稿共32张,创作于星期二1944年阿委瑞(Avery,O.T.)不仅重复了上述实验,而且将S型菌的DNA提取物与R型混合在一起,在离体培养条件下,使少数R型转化成了S型,并能稳定遗传,因为该提取物不受蛋白酶、多糖酶、核糖核酸酶(RNA酶)的影响,而只能为DNA酶所破坏,所以认为促成转化的物质是DNA。说明R型通过吸收了S型的DNA片段,实现了转化过程。这个转化实验直接证明了遗传物质是DNA,而不是蛋白质,也说明细菌的遗传物质可以通过转化进行重组。第18页,讲稿共32张,创作于星期二转化的过程:1、供体、供体DNA的结合和穿入的结合和穿入(1)供体DNA片段必须是双链,且至少具有一定的长度和一定的浓度(2)受体细胞必须处于感受态(3)受体细胞利用DNA外切酶或移位酶(translocase)降解其中一条链,利用降解产生的能量,将另一条链纵向拉进细胞。第19页,讲稿共32张,创作于星期二2、联会(、联会(synapsis)供体单链DNA与受体DNA根据亲缘关系进行联会,亲缘关系远,联会的可能性就小,转化的成功率就低,反之,则大。3、整合(、整合(integration)配对后通过置换作用,使供体DNA片段参入到受体DNA中。第20页,讲稿共32张,创作于星期二二、接合二、接合接合(conjugation):指原核生物的遗传物质通过细胞接触从供体(雄性)转移到受体(雌性)的过程。(一)接合与转化的区别(一)接合与转化的区别1946年黎德伯格(Lederberg,J.)和塔特姆(Tatum,E.)用E.coliK12品系做的实验:met:甲硫氨酸缺陷型bio:生物素(biotin)缺陷型thr:苏氨酸(threonine)缺陷型leu:亮氨酸(leucine)缺陷型第21页,讲稿共32张,创作于星期二 图图711 戴维斯的戴维斯的U型管试验型管试验为了解释上述原养型形成的原因,1950年戴维斯(Davis,B.)设计了U型管试验(图711)。A菌株和B菌株混合一段时间后,从任何一个臂内取样,分别涂布在基本培养基上,都没有出现原养形细菌。说明细胞接触是上述实验出现原养型的必要条件。所以这是接合而不是转化,二者的区别就在于细胞是否接触。第22页,讲稿共32张,创作于星期二(二)接合的过程(二)接合的过程1952年,海斯(Hayes,W.)证明,接合中遗传物质的交流是单方向的:A(雄性,供体)B(雌性,受体)后来研究发现,之所以AB,是因为A中有一个性因子(sexfactor),称F因子,它是DNA,它可以自主存在于细胞质中,也可整合到细菌的染色体组内,这类遗传颗粒叫附加体(episome)。根据F因子在细胞中存在的状态,将细菌(以E.coli为例)分为三类:F+:F因子自主状态存在于细胞质中F:细胞质中无F因子Hfr:F因子整合在细菌的染色体组内第23页,讲稿共32张,创作于星期二接合有两种情况:部分二倍体(部分合子)内基因子外基因子单交换时,E.coli的染色体被打开,呈链状,细菌死亡,无意义。双交换时,产生遗传的重组体,实现了遗传物质的交换。需要说明的是F很少转为Hfr(与F可转化为F区别),因为Hfr中的DNA在转移的过程中,接合常常中断。第24页,讲稿共32张,创作于星期二分分 别别 影影 印印 培培 养养 到到 各各 培培 养养 皿皿 中中(三)中断杂交试验和染色体作图(三)中断杂交试验和染色体作图在接合过程中,根据F细胞中发现Hfr细胞基因的时间早晚来确定其顺序,从而进行基因定位。原理:把Hfr菌株与F菌株混合培养设Hfr菌株的基因型为:strsa+b+c+d+F菌株的基因型为:strrabcd(strs-链霉素敏感基因,strr-链霉素抗性基因,abcd代表不同的基因,-为原养型或抗性,-为缺陷型或敏感型)含含str的完全培养基以的完全培养基以杀死杀死Hfr细胞细胞 缺少缺少A物质的物质的 缺少缺少B物质的物质的 缺少缺少C物质的物质的 缺少缺少D物质的物质的 完全培养基完全培养基 完全培养基完全培养基 完全培养基完全培养基 完全培养基完全培养基HfrF混合培养混合培养隔一定时间取样搅拌第25页,讲稿共32张,创作于星期二1950年雅科(Jacob,F.)和沃尔曼(Wollman,E.)的中断杂交试验(interruptedmatingexperiment):Hfr的基因型的基因型 F的基因型的基因型thr-苏氨酸野生型thrleu-亮氨酸野生型leuaziR-抗叠氮化钠aziStonR-抗T1噬菌体tonSlac-能发酵乳糖lacgal-能发酵半乳糖galstrS-对链霉素敏感strR实验发现:混合8分钟后取样,开始出现少量thr的F菌落;混合8.5分钟后取样,开始出现少量leu的F菌落;混合9分钟后取样,开始出现少量抗azi的F菌落;混合11分钟后取样,开始出现少量抗T1噬菌体的F菌落;混合18分钟后取样,开始出现乳糖发酵基因的F菌落;混合25分钟后取样,开始出现半乳糖发酵基因的F菌落;在18分钟之前F均属不发酵型。随着时间的推移,从Hfr得到的某个等位基因重组体的百分率增加,百分率增加到一定程度,就维持在一定的水平,很少出现100,这是因为在人为搅拌之前,有些接合已经中断,这种情况在重组体中就不会出现某个基因。第26页,讲稿共32张,创作于星期二根据上述实验可知,Hfr菌中的基因是按一定的线性顺序依次进入F的,据开始进入时间的早晚,可作出基因的直线连锁图(图718),以始点为原点(origin),写作OthrleuazitonlacgalF88.59111825O图图718 根据中断杂交试验作出的大肠杆菌直线连锁图(数字单位:根据中断杂交试验作出的大肠杆菌直线连锁图(数字单位:min)第27页,讲稿共32张,创作于星期二注注意意:对于同一种细菌来说,不同的菌株F因子整合到细菌染色体的位置可能不同,这就形成不同的Hfr类型,在接合时,转移的原点和方向可能不同,就会出现多种基因转移顺序(如表76)。Hfr的类型基因转移顺序HfrH123AB312OthrprolacpurgalhisglythiOthrthiglyhisgalpurlacproOprothrthiglyhisgalpurlacOpurlacprothrthiglyhisgalOthithrprolacpurgalhisgly从表76看出,尽管Hfr类型不同,基因转移的起点和顺序不同,但基因的相邻关系并没有改变,说明细菌染色体是环状的,据表76作连锁图(图719),但当两基因的距离小于2分钟时,中断杂交法作出的图距不太准确。表表76 用中断杂交法确定的几个用中断杂交法确定的几个Hfr菌株的基因顺序菌株的基因顺序第28页,讲稿共32张,创作于星期二三、性导三、性导(sexduction)F因子整合在细菌染色体(形成Hfr)的过程是可逆的,即可以整合上去,也可以通过环出(loopingout)又离开染色体,但偶尔在离开时不够准确,携带了一段细菌染色体,这种F因子称F因子,在接合时,含有F因子的细菌(供体)以高频率地转移它的基因,并且整合在一定的座位上,因为它有与细菌染色体的同源区段(与正常F因子可整合在不同的座位相区别)形成部分二倍体,F因子可能消失,也可能通过交换使等位基因发生重组,产生重组体,实现了遗传物质的交换。第29页,讲稿共32张,创作于星期二四、转导四、转导转导(transduction):指以噬菌体为媒介,将一个细菌的遗传物质转移给另一个细菌的过程。在转导过程中,细菌的一段染色体被错误地包装在噬菌体的蛋白质外壳内,通过再次感染而转移到另一个受体细菌内,形成的部分二倍体可以发生交换,从而实现遗传物质的重组。有些噬菌体包装细菌染色体的片段是随机的,这叫普遍性转导(generalizedtransduction)(下图),如P1、P22等。第30页,讲稿共32张,创作于星期二有些噬菌体只包装细菌染色体的某一部分,这种转导叫局限性转导(restrictedtransduction)或特殊性转导(specializedtransduction)。说明:(1)包装在噬菌体内的细菌染色体片段不受DNA酶的破坏,所以用DNA酶可以区分转化和转导。(2)因感染特性是由噬菌体的蛋白质外壳决定的,裂解特性是由噬菌体的DNA决定的。所以,包装有细菌染色体片段的噬菌体可再感染细菌,而因不含噬菌体的遗传物质,所以不会使细菌裂解。第31页,讲稿共32张,创作于星期二感谢大家观看第32页,讲稿共32张,创作于星期二