欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    新课标高中数学人教A版必修第二章小结与复习52621.pdf

    • 资源ID:84898664       资源大小:646.65KB        全文页数:11页
    • 资源格式: PDF        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    新课标高中数学人教A版必修第二章小结与复习52621.pdf

    第二章小结与复习(一)教学目标1.知识与技能掌握指数函数、对数函数、幂函数的概念和性质.对复合函数、抽象函数有一个新的认识.2.过程与方法归纳、总结、提高.3.情感、态度、价值观培养学生分析问题、解决问题和交流的能力及分类讨论、抽象理解能力.(二)教学重点、难点重点:指数函数、对数函数的性质的运用.难点:分类讨论的标准、抽象函数的理解.(三)教学方法讲授法、讨论法.(四)教学过程教学环节 教学内容 师生互动 设计意图 复习引入(多媒体投影)1.本章知识结构学生总结,老师完善.师:请同学们总结本章知识结构.生:(1)指数式和对数式:整数指数幂;方根和根式的概念;分数指数幂;有理指数幂的运算性质;无理数指数幂;对数概念;对数的运算性质;指数式与对数式的互化关系.(2)指数函数:指数函数的概念;指数函数的定义域、值域;指数函数的图象(恒过定点(0,1),分 a1,对本章知识、方法形成体系.2.方法总结 0a1 两种情况);不同底的指数函数图象的比较;指数函数的单调性(分a1,0a1 两种情况);图象和性质的应用.(3)对数函数:对数函数的概念;对数函数的定义域、值域;对数函数的图象(恒过定点(0,1),分a1 和 0a1 两种情况);不同底的对数函数图象的比较;对数函数的单调性(分 a1,0a1两种情况);图象和性质的应用;反函数的有关知识.(4)幂函数:幂函数的概念;幂函数的定义域、值域(要结合指数来讲);幂函数的图象(过定点情况,图象要结合指数来讲);幂函数的性质(奇偶性、单调性等,同样要结合指数);图象和性质的应用.师:请同学们归纳本章解题方法.生:(1)函数的定义域的求法:列出使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为:分母不为 0;偶次根式中被开方数不小于 0;对数的真数大于0,底数大于零且不等于 1;零指数幂的底数不等于零;实际问题要考虑实际意义等.(2)函数值域的求法:配方法(二次或四次);判别式法;反函数法;换元法;函数的单调性法.(3)单调性的判定法:设 x1、x2是所研究区间内的任两个自变量,且 x1x2;判定 f(x1)与 f(x2)的大小;作差比较或作商比较.(注:做有关选择、填空题时,可采用复合函数单调性判定法,做解答题时必须用单调性定义和基本函数的单调性)(4)图象的作法与平移:据函数表达式,列表、描点、连光滑曲线;利用熟知函数的图象的平移、翻转;利用函数图象的对称性或互为反函数图象的对称描绘函数图象.(5)常用函数的研究、总结与推广:研究函数 y=21(axax)(a0,且 a1)的定义域、值域、单调性、反函数;研究函数 y=loga(21xx)(a0,且 a1)的定义域、单调性、反函数.(6)抽象函数即不给出 f(x)的解析式,只知道 f(x)具备的条件的研究.若 f(a+x)=f(ax),则 f(x)关于直线 x=a 对称.若对任意的 x、yR,都有 f(x+y)=f(x)+f(y),则 f(x)可与指数函数类比.若对任意的 x、y(0,+)都有 f(xy)=f(x)+f(y),则 f(x)可与对数函数类比.应用举例 例 1 设 a0,x=21(an1an1),求(x+21x)n的值.例 2 已知函数 f(x)=11xxmm(m0,且 m1).(1)求函数 f(x)的定义域和值域;例 1 解:1+x2=1+41(an22+an2)=41(an2)+2+an2)=21(an1+an1)2.a0,an10,an10.an1+an10.x+21x=x+21(an1+an1)=21(an1an1)+21(an1+an1)=an1.(x+21x)n=a.小结:本题考查了分数指数幂的运算性质,技巧是把根号大的式子化成完全平方的形式.例 2解:(1)mx0,mx+10 恒成立,函数的定义域为 R.y=11xxmm,mx=yy110.1y1.进一步掌握指数函数、对数函数、幂函数的概念和性质等知识.培养学生分析问题、解决问题和交(2)判断 f(x)的奇偶性;(3)讨论函数 f(x)的单调性.【例 3】己知 f(x)=1+log2x(1x4),求函数 g(x)=f 2(x)函数 f(x)的值域为(1,1).(2)函数的定义域为 R,关于原点对称,又f(x)=11xxmm=xxmm11=f(x),函数 f(x)是奇函数.(3)任取 x1x2,则 f(x1)f(x2)=1111xxmm1122xxmm=)1)(1()(22121xxxxmmmm.m1x+10,m2x+10,当 m1 时,m1xm2x0,f(x1)f(x2)0,即 f(x1)f(x2);当 0m1 时,m1xm2x0,f(x1)f(x2)0,即 f(x1)f(x2).综上,当 m1 时,函数 f(x)为增函数;当 0m1 时,函数 f(x)为减函数.小结:求值域用了反表示法,函数表达式中有指数式 mx,它具有大于 0 的范围,注意反表示法求值域这类题型的特征.函数的单调性要注意分类讨论.例 3 解:f(x)的定义域为 1,4,g(x)的定义域为1,2.g(x)=f 2(x)+f(x2)=(1+log2x)流的能力及分类讨论、抽象理解能力.+f(x2)的最大值和最小值.【例 4】求函数 y=loga(xx2)(a0,a1)的定义域、值域、单调区间.2+(1+log2x2)=(log2x+2)22,又 1x2,0log2x1,当 x=1 时,g(x)min=2;当 x=2 时,g(x)max=7.小结:这是一道易错题,首先要考虑定义域是本题防错的关键.其实研究函数问题考虑定义域应该成为一种习惯.例 4 解:(1)定义域:由 xx20,得 0 x1,定义域为(0,1).(2)0 xx2=(x21)2+4141,当 0a1 时,loga(xx2)loga41,函数的值域为loga41,+);当 a1 时,loga(xx2)loga41,函数的值域为(,loga41.(3)令 u=xx2,在区间(0,1)内,u=xx2在(0,21 上递增,在 21,1)上递减.当 0a1 时,函数在(0,21上是减函数,在21,1)上是增函数;当 a1 时,函数在(0,21上是增函数,在21,1)上是减函数.小结:复合函数的定义域、值域、【例 5】设 x0,y0,且x+2y=1,求 函 数y=log21(8xy+4y2+1)的值域.例 6 函数 f(x)=lg(a21)x2+(a+1)x+1.(1)若 f(x)的定义域为(,+),求实数 a 的取值范围;(2)若 f(x)的值域为(,+),求实数 a 的取值范围.单调性、奇偶性的研究通常由里向外,本题讨论的分界线是对数的底.例 5 解:x+2y=1,x=12y0.又 y0,0y21.8xy+4y2+1=8(12y)y+4y2+1=12y2+8y+1.0y21,112y2+8y+1=12(y31)2+3737.log2137log21(8xy+4y2+1)log211=0.函数的值域为log2137,0.小结:本题的易错点是代换时没有注意到通过 x 求出 y 的范围.所以我们在代换时要注意等价代换,即考虑到字母的取值范围.例 6 解:(1)f(x)的定义域为(,+),(a21)x2+(a+1)x+10 对一切 xR 恒成立.当 a210 时,,0)1(4)1(,01222aaa 即.351,11aaaa a1 或 a35.当 a21=0 时,若 a=1,则 f(x)=0,定义域也是(,+);若 a=1,则 f(x)=lg(2x+1),定义域不是(,+).故所求 a 的取值范围是(,1(35,+).(2)f(x)的值域为(,+),只要 t=(a21)x2+(a+1)x+1能取到(0,+)内的任何一个值.,0)1(4)1(,01222aaa 即.351,11aaa 1a35.又当 a21=0 时,若 a=1,则 f(x)=lg(2x+1),其值域也是(,+);若 a=1,则 f(x)=0,不合题意.所求 a 的取值范围是1,35.小结:本题考查了换元转化思想和分类讨论思想,理解对数函数概念,特别是把握定义域、值域的含义是解题的关键.特别是(2)中,f(x)的值域是 R的含义是真数部分即 t=(a1)x2+(a+1)x+1 在 x 取值时需取满足(0,+)的每一个值,否则 f(x)的值域就不是 R,或 或 或 这就要求 t 关于 x 的二次函数不能有比零大的最小值.因此 0,这时要注意 f(x)的定义域不是 R 的集合了,而是(,x1)(x2,+),其中 x1、x2分别为相应二次方程的小根、大根.归纳 总结 1.我们从正整数指数幂出发,经过推广得到了有理数指数幂,又由“有理数逼近无理数”的思想,认识了实数指数幂.这个过程体现了数学概念推广的基本思想.有理数指数幂、实数指数幂的运算性质是从正整数指数幂推广得到的.从对数与指数的相互联系出发,根据指数幂的运算性质,我们推出了对数运算性质.2.函数是描述客观世界变化规律的重要数学模型,不同的变化规律需要用不同的函数模型描述.本章学习的三种不同类型的函数模型,刻画了客观世界中三类具有不同变化规律,因而具有不同对应关系的变化现象.指数函数、对数函数和幂函数是描述客观世界中许多事物发展变化的三类重要的函数模型,这三类函数的图象和性质是我们解决相关问题的重要工具.学生先自回顾反思,教师点评完善 形成知识体系.3.研究函数时,函数图象的作用要充分重视.另外,计算器或计算机可以帮助我们方便地作出函数图象,并可以动态地演示函数的变化过程,这对我们研究函数性质很有帮助.课后 作业 作业:小结与复习 习案 学生独立完成 巩固新知 提升能力 备选例题 例 1 已知 f(x)=lgx,则 y=|f(1 x)|的图象是下图中的(A)【解析】方法一:y=|f(1 x)|=|lg(1 x)|,显然 x1,故排除 B、D;又因为当 x=0时,y=0,故排除 C.方法二:从图象变换得结果:180lg轴翻转把图象绕yxyy=lg(x)1lg()lg(xyxy位把图象向右平移一个单 y=lg(x1)轴翻折到上方轴下方部分沿把xxy=|lg(1 x)|.【小结】(1)y=lgx 变成 y=lg(1 x)过程不会变换,不知道关于什么轴对称导致误解.(2)解决有关图象的选择问题,方法比较灵活,可用特值排除法,也可直接求解,但一定要注意图象的特点,对于图象的对称、平移问题一定要注意对称轴是什么.平移是左移还是右移,移动的单位是多少,这是移动的关键.例 2 设 a0,a1,t0,比较talog21与21logta的大小,并证明你的结论.【解析】t0,可比较talog与21logta的大小,即比较t与21t的大小.当 t=1 时,21tt,21loglogttaa.当 t1 时,12)(212tttt=2)1(t0,t+1t2,21tt.当 0a1 时,talog21logta,即talog2121logta.当 a1 时,talog21logta,即talog2121logta.综上知:当 t=1 时,21loglog21ttaa;当 t0 且 t1 时,若 0a1,有talog2121logta;若 a1,则有talog2121logta.【小结】解决此类比较大小的题目,要注意结合函数的单调性,作差比较一定要判断差值与 0 的大小,从而作出大小的比较,注意分类讨论的思想应用,本题中的 t+1 和t2的比较.可由 t+1 222)1(21)(tttt0,所以 t+1t2(t=1 时取等号),从而得出 012tt1 和21tt.

    注意事项

    本文(新课标高中数学人教A版必修第二章小结与复习52621.pdf)为本站会员(得**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开