1.2.3直线与平面的位置关系 (4).pptx
2.3.1直线与平面垂直的判定温宿县第二中学 教师:秦蔚 2017.12.1回顾知识:回顾知识:空间中一条直线与平面有哪几种位置关系?空间中一条直线与平面有哪几种位置关系?(1)直线在平面内,)直线在平面内,(2)直线与平面平行,)直线与平面平行,(3)直线与平面相交)直线与平面相交知识探究(一):知识探究(一):直线与平面垂直的概念直线与平面垂直的概念(垂直垂直)大漠孤烟直大漠孤烟直直线与平面垂直的定义:直线与平面垂直的定义:图形表示:图形表示:Pl文字表示:文字表示:如果一条直线如果一条直线l与与平面平面内的内的任意一条任意一条直线都垂直,直线都垂直,则称这条直线与这个平面垂直则称这条直线与这个平面垂直.记作记作 垂足垂足平面平面的垂线的垂线直线直线l的垂面的垂面思考思考一条直线与一平面垂直的特征是什么?一条直线与一平面垂直的特征是什么?特征:直线垂直于平面内的任意一条直线特征:直线垂直于平面内的任意一条直线CPl深入理解深入理解“线面垂直定义线面垂直定义”判断下列语句是否正确:(若不正确请举反例)判断下列语句是否正确:(若不正确请举反例)1.1.如果一条直线与一个平面垂直,那么它与平面如果一条直线与一个平面垂直,那么它与平面内所有的直线都垂直内所有的直线都垂直.()2.2.如果一条直线与平面内无数条直线都垂直,那如果一条直线与平面内无数条直线都垂直,那么它与平面垂直么它与平面垂直.()ba直线与平面垂直的判定定理:直线与平面垂直的判定定理:一条直线和一个平面内的一条直线和一个平面内的两条相交直线两条相交直线都都垂直垂直,则这条直线垂直于这个平面则这条直线垂直于这个平面.Pmnl线线垂直线线垂直 线线面垂直面垂直关键:线不在多,相交则行关键:线不在多,相交则行例例1 1.如图,已知如图,已知abab、a.a.求证:求证:b.b.(线面垂直 线线垂直)(线线垂直 线面垂直)例2:如图,已知如图,已知OAOA、OBOB、OCOC两两垂直两两垂直(1 1)求证:)求证:OAOA平面平面OBCOBC(2 2)求证:)求证:OABCOABCBCOA分析分析:(:(1)要证)要证OA 平面平面OBC,必须在平面,必须在平面OBC中找出两条与中找出两条与OA垂直的相交直线。垂直的相交直线。AVBCK练习:练习:1.如图如图,在三棱锥在三棱锥V-ABC中中,VAVC,ABBC,K是是AC的中点的中点.求证:求证:AC平面平面VKB 变式:变式:在练习在练习1.中若中若E、F分别为分别为AB、BC 的中点,试判断的中点,试判断EF与平面与平面VKB的位置关系的位置关系 AVBCE EF FK 在在的条件下,有人说的条件下,有人说“VBAC,VBEF,VB平面平面ABC”,对吗?,对吗?我们知道我们知道,当直线和平面垂直时当直线和平面垂直时,该直线叫做平面该直线叫做平面的垂线。如果直线和平面不垂直的垂线。如果直线和平面不垂直,是不是也该给它是不是也该给它取个名字呢取个名字呢?此时又该如何刻画直线和平面的这种此时又该如何刻画直线和平面的这种关系呢关系呢?如图如图,若一条直线若一条直线PAPA和一个和一个平面平面相交相交,但不垂直但不垂直,那么那么这条直线就叫做这个平面的这条直线就叫做这个平面的斜线斜线,斜线和平面的交点斜线和平面的交点A A叫叫做斜足。做斜足。PA斜足斜足斜线斜线如图如图,过斜线上斜足以外的一点过斜线上斜足以外的一点向平面引垂线向平面引垂线PO,PO,过垂足过垂足O O和斜和斜足足A A的直线的直线AOAO叫做斜线在这个平叫做斜线在这个平面上的射影面上的射影.平面的一条斜线和平面的一条斜线和它在平面上的射影所成的锐角它在平面上的射影所成的锐角,叫做这条直线和这个平面所成叫做这条直线和这个平面所成的角的角。斜线斜线斜足斜足射影射影垂足垂足垂线垂线一条直线垂直于平面一条直线垂直于平面,我们说它所成的我们说它所成的角是直角;一条直线和平面平行角是直角;一条直线和平面平行,或在或在平面内平面内,我们说它所成的角是我们说它所成的角是0 00 0的角。的角。规定规定:想一想想一想:直线与平面所成的角直线与平面所成的角的取值范围是什么的取值范围是什么?1.如图:正方体如图:正方体ABCD-A1B1C1D1中,求中,求:(1)AB1在面在面BB1D1D中的射影中的射影(2)AB1在面在面A1B1CD中的射影中的射影A1D1C1B1ADCB练习练习2.如图:正方体如图:正方体ABCD-A1B1C1D1中,求中,求:(1)AB1在面在面BB1D1D中的射影中的射影(2)AB1在面在面A1B1CD中的射影中的射影A1D1C1B1ADCBO线段线段B1O巩固练习巩固练习2.如图:正方体如图:正方体ABCD-A1B1C1D1中,求中,求:(1)AB1在面在面BB1D1D中的射影中的射影(2)AB1在面在面A1B1CD中的射影中的射影A1D1C1B1ADCBE线段线段B1E巩固练习巩固练习2.如图:正方体如图:正方体ABCD-A1B1C1D1中,求中,求:(1)AB1在面在面BB1D1D中的射影中的射影(2)AB1在面在面A1B1CD中的射影中的射影A1D1C1B1ADCB巩固练习巩固练习A A1 1B B1 1C C1 1D D1 1A AB BC CD D例例1 1、如图,正方体、如图,正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中,求中,求(1 1)直线)直线A A1 1B B和平面和平面BCCBCC1 1B B1 1所成的角。所成的角。(2 2)直线)直线A A1 1B B和平面和平面A A1 1B B1 1CDCD所成的角。所成的角。O例题示范例题示范,巩固新知巩固新知分析分析:找出直线找出直线A A1 1B B在平面在平面BCCBCC1 1B B1 1和平面和平面A A1 1B B1 1CDCD内的射内的射影影,就可以求出就可以求出A A1 1B B和平面和平面BCCBCC1 1B B1 1和平面和平面A A1 1B B1 1CDCD所成的所成的角。角。归纳小结归纳小结1 1直线与平面垂直的概念直线与平面垂直的概念(1 1)利用定义;)利用定义;(2 2)利用判定定理)利用判定定理3 3数学思想方法:转化的思想数学思想方法:转化的思想空间问题空间问题平面问题平面问题3 3直线与平面垂直的判定直线与平面垂直的判定线线垂直线线垂直线面垂直线面垂直垂直于平面内任意一条直线垂直于平面内任意一条直线2.2.线面角的概念及范围线面角的概念及范围