中考数学九班级学问点.docx
中考数学九班级学问点 数学是一种理性的精神,使人类的思维得以运用到最完善的程度,学好数学有助于我们用规律的思维看待世界,接下来我在这里给大家共享一些关于中考数学九班级学问点,供大家学习和参考,盼望对大家有所关心。 中考数学九班级学问点 第一章 实数 一、 重要概念 1.数的分类及概念 数系表: 说明:分类的原则:1)相称(不重、不漏) 2)有标准 2.非负数:正实数与零的统称。(表为:x0) 性质:若干个非负数的和为0,则每个非负数均为0。 3.倒数: 定义及表示法 性质:A.a1/a(a±1);B.1/a中,a0;C.01;a1时,1/a1;D.积为1。 4.相反数: 定义及表示法 性质:A.a0时,a-a;B.a与-a在数轴上的位置;C.和为0,商为-1。 5.数轴:定义(三要素) 作用:A.直观地比较实数的大小;B.明确体现肯定值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数-自然数) 定义及表示: 奇数:2n-1 偶数:2n(n为自然数) 7.肯定值:定义(两种): 代数定义: 几何定义:数a的肯定值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 a0,符号是非负数的标志;数a的肯定值只有一个;处理任何类型的题目,只要其中有出现,其关键一步是去掉符号。 二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个-加法乘法交换律、结合律;乘法对加法的 安排律) 3. 运算挨次:A.高级运算到低级运算;B.(同级运算)从左 到右(如5÷ ×5);C.(有括号时)由小到中到大。 三、 应用举例(略) 附:典型例题 1. 已知:a、b、x在数轴上的位置如下图,求证:x-a+x-b =b-a. 2.已知:a-b=-2且ab0,(a0,b0),推断a、b的符号。 其次章 代数式 重点代数式的有关概念及性质,代数式的运算 内容提要 一、 重要概念 分类: 1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独 的一个数或字母也是代数式。 整式和分式统称为有理式。 2.整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 有除法运算并且除式中含有字母的有理式叫做分式。 3.单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明:依据除式中有否字母,将整式和分式区分开;依据整式中有否加减运算,把单项式、多项式区分开。进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从形状来看。如, =x, =x等。 4.系数与指数 区分与联系:从位置上看;从表示的意义上看 5.同类项及其合并 条件:字母相同;相同字母的指数相同 合并依据:乘法安排律 6.根式 表示方根的代数式叫做根式。 含有关于字母开方运算的代数式叫做无理式。 留意:从形状上推断;区分: 、 是根式,但不是无理式(是无理数)。 7.算术平方根 正数a的正的平方根( a0-与平方根的区分); 算术平方根与肯定值 联系:都是非负数, =a 区分:a中,a为一切实数; 中,a为非负数。 8.同类二次根式、最简二次根式、分母有理化 化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。 满意条件:被开方数的因数是整数,因式是整式;被开方数中不含有开得尽方的因数或因式。 把分母中的根号划去叫做分母有理化。 9.指数 ( -幂,乘方运算) a0时, 0;a0时, 0(n是偶数), 0(n是奇数) 零指数: =1(a0) 负整指数: =1/ (a0,p是正整数) 二、 运算定律、性质、法则 1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质 基本性质: = (m0) 符号法则: 繁分式:定义;化简方法(两种) 3.整式运算法则(去括号、添括号法则) 4.幂的运算性质: o = ; ÷ = ; = ; = ; 技巧: 5.乘法法则:单×单;单×多;多×多。 6.乘法公式:(正、逆用) (a+b)(a-b)= (a±b) = 7.除法法则:单÷单;多÷单。 8.因式分解:定义;方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。 9.算术根的性质: = ; ; (a0,b0); (a0,b0)(正用、逆用) 10.根式运算法则:加法法则(合并同类二次根式);乘、除法法则;分母有理化:A. ;B. ;C. . 11.科学记数法: (1a10,n是整数= 三、 应用举例(略) 四、 数式综合运算(略) 第三章 统计初步 重点 内容提要 一、 重要概念 1.总体:考察对象的全体。 2.个体:总体中每一个考察对象。 3.样本:从总体中抽出的一部分个体。 4.样本容量:样本中个体的数目。 5.众数:一组数据中,出现次数最多的数据。 6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数) 二、 计算方法 1.样本平均数: ;若 , , ,则 (a-常数, , , 接近较整的常数a);加权平均数: ;平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估量总体平均数,样本容量越大,估量越精确。 2.样本方差: ;若 , , ,则 (a-接近 、 、 的平均数的较整的常数);若 、 、 较小较整,则 ;样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差特别接近总体方差,通常用样本方差去估量总体方差。 3.样本标准差: 三、 应用举例(略) 第四章 直线形 重点相交线与平行线、三角形、四边形的有关概念、判定、性质。 内容提要 一、 直线、相交线、平行线 1.线段、射线、直线三者的区分与联系 从图形、表示法、界限、端点个数、基本性质等方面加以分析。 2.线段的中点及表示 3.直线、线段的基本性质(用线段的基本性质论证三角形两边之和大于第三边) 4.两点间的距离(三个距离:点-点;点-线;线-线) 5.角(平角、周角、直角、锐角、钝角) 6.互为余角、互为补角及表示方法 7.角的平分线及其表示 8.垂线及基本性质(利用它证明直角三角形中斜边大于直角边) 9.对顶角及性质 10.平行线及判定与性质(互逆)(二者的区分与联系) 11.常用定理:同平行于一条直线的两条直线平行(传递性);同垂直于一条直线的两条直线平行。 12.定义、命题、命题的组成 13.公理、定理 14.逆命题 二、 三角形 分类:按边分; 按角分 1.定义(包括内、外角) 2.三角形的边角关系:角与角:内角和及推论;外角和;n边形内角和;n边形外角和。边与边:三角形两边之和大于第三边,两边之差小于第三边。角与边:在同一三角形中, 3.三角形的主要线段 争论:定义线的交点-三角形的×心性质 高线中线角平分线中垂线中位线 一般三角形特别三角形:直角三角形、等腰三角形、等边三角形 4.特别三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5.全等三角形 一般三角形全等的判定(SAS、ASA、AAS、SSS) 特别三角形全等的判定:一般方法专用方法 6.三角形的面积 一般计算公式性质:等底等高的三角形面积相等。 7.重要帮助线 中点配中点构成中位线;加倍中线;添加帮助平行线 8.证明方法 直接证法:综合法、分析法 间接证法-反证法:反设归谬结论 证线段相等、角相等常通过证三角形全等 证线段倍分关系:加倍法、折半法 证线段和差关系:延结法、截余法 证面积关系:将面积表示出来 三、 四边形 分类表: 1.一般性质(角) 内角和:360° 顺次连结各边中点得平行四边形。 推论1:顺次连结对角线相等的四边形各边中点得菱形。 推论2:顺次连结对角线相互垂直的四边形各边中点得矩形。 外角和:360° 2.特别四边形 讨论它们的一般方法: 平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定 判定步骤:四边形平行四边形矩形正方形 菱形- 对角线的纽带作用: 3.对称图形 轴对称(定义及性质);中心对称(定义及性质) 4.有关定理:平行线等分线段定理及其推论1、2 三角形、梯形的中位线定理 平行线间的距离到处相等。(如,找下图中面积相等的三角形) 5.重要帮助线:常连结四边形的对角线;梯形中常平移一腰、平移对角线、作高、连结顶点和对腰中点并延长与底边相交转化为三角形。 6.作图:任意等分线段。 四、 应用举例(略) 第五章 方程(组) 重点一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特殊是行程、工程问题) 内容提要 一、 基本概念 1.方程、方程的解(根)、方程组的解、解方程(组) 2. 分类: 二、 解方程的依据-等式性质 1.a=ba+c=b+c 2.a=bac=bc (c0) 三、 解法 1.一元一次方程的解法:去分母去括号移项合并同类项 系数化成1解。 2. 元一次方程组的解法:基本思想:消元方法:代入法 加减法 四、 一元二次方程 1.定义及一般形式: 2.解法:直接开平方法(留意特征) 配方法(留意步骤-推倒求根公式) 公式法: 因式分解法(特征:左边=0) 3.根的判别式: 4.根与系数顶的关系: 逆定理:若 ,则以 为根的一元二次方程是: 。 5.常用等式: 五、 可化为一元二次方程的方程 1.分式方程 定义 基本思想: 基本解法:去分母法换元法(如, ) 验根及方法 2.无理方程 定义 基本思想: 基本解法:乘方法(留意技巧!)换元法(例, )验根及方法 3.简洁的二元二次方程组 由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。 六、 列方程(组)解应用题 一概述 列方程(组)解应用题是中学数学联系实际的一个重要方面。其详细步骤是: 审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。 设元(未知数)。直接未知数间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。 用含未知数的代数式表示相关的量。 查找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。 解方程及检验。 答案。 综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。 二常用的相等关系 1. 行程问题(匀速运动) 基本关系:s=vt 相遇问题(同时动身): 追及问题(同时动身): 若甲动身t小时后,乙才动身,而后在B处追上甲,则 水中航行: ; 2. 配料问题:溶质=溶液×浓度 溶液=溶质+溶剂 3.增长率问题: 4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位1)。 5.几何问题:常用勾股定理,几何体的面积、体积公式,相像形及有关比例性质等。 三留意语言与解析式的互化 如,多、少、增加了、增加为(到)、同时、扩大为(到)、扩大了、 又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。 四留意从语言叙述中写出相等关系。 如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五留意单位换算 如,小时分钟的换算;s、v、t单位的全都等。 七、应用举例(略) 第六章 一元一次不等式(组) 重点一元一次不等式的性质、解法 内容提要 1. 定义:ab、a 2. 一元一次不等式:axb、ax 3. 一元一次不等式组: 4. 不等式的性质:aba+cb+c abacbc(c0) abac (传递性)ab,bcac ab,cda+cb+d. 5.一元一次不等式的解、解一元一次不等式 6.一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集) 7.应用举例(略) 第七章 相像形 重点相像三角形的判定和性质 内容提要 一、本章的两套定理 第一套(比例的有关性质): 涉及概念:第四比例项比例中项比的前项、后项,比的内项、外项黄金分割等。 其次套: 留意:定理中对应二字的含义; 平行相像(比例线段)平行。 二、相像三角形性质 1.对应线段;2.对应周长;3.对应面积。 三、相关作图 作第四比例项;作比例中项。 四、证(解)题规律、帮助线 1.等积变比例,比例找相像。 2.找相像找不到,找中间比。方法:将等式左右两边的比表示出来 3.添加帮助平行线是获得成比例线段和相像三角形的重要途径。 4.对比例问题,常用处理方法是将一份看着k;对于等比问题,常用处理方法是设公比为k。 5.对于复杂的几何图形,采纳将部分需要的图形(或基本图形)抽出来的方法处理。 五、 应用举例(略) 第八章 函数及其图象 重点正、反比例函数,一次、二次函数的图象和性质。 内容提要 一、平面直角坐标系 1.各象限内点的坐标的特点 2.坐标轴上点的坐标的特点 3.关于坐标轴、原点对称的点的坐标的特点 4.坐标平面内点与有序实数对的对应关系 二、函数 1.表示方法:解析法;列表法;图象法。 2.确定自变量取值范围的原则:使代数式有意义;使实际问题有 意义。 3.画函数图象:列表;描点;连线。 三、几种特别函数 (定义图象性质) 1. 正比例函数 定义:y=kx(k0) 或y/x=k。 图象:直线(过原点) 性质:k0,k0, 2. 一次函数 定义:y=kx+b(k0) 图象:直线过点(0,b)-与y轴的交点和(-b/k,0)-与x轴的交点。 性质:k0,k0, 图象的四种状况: 3. 二次函数 定义: 特别地, 都是二次函数。 图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。 用配方法变为,则顶点为(h,k);对称轴为直线x=h;a0时,开口向上;a0时,开口向下。 性质:a0时,在对称轴左侧,右侧;a0时,在对称轴左侧,右侧。 4.反比例函数 定义: 或xy=k(k0)。 图象:双曲线(两支)-用描点法画出。 性质:k0时,图象位于,y随x;k0时,图象位于,y随x;两支曲线无限接近于坐标轴但永久不能到达坐标轴。 四、重要解题方法 1.用待定系数法求解析式(列方程组求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,查找新的点的坐标。如下图: 2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。 六、应用举例(略) 第九章 解直角三角形 重点解直角三角形 内容提要 一、三角函数 1.定义:在RtABC中,C=Rt,则sinA= ;cosA= ;t可求出相关元素, 、 等) 六、 一组计算公式 1.圆周长公式 2.圆面积公式 3.扇形面积公式 4.弧长公式 5.弓形面积的计算方法 6.圆柱、圆锥的侧面绽开图及相关计算 七、 点的轨迹 六条基本轨迹 八、 有关作图 1.作三角形的外接圆、内切圆 2.平分已知弧 3.作已知两线段的比例中项 4.等分圆周:4、8;6、3等分 九、 基本图形 十、 重要帮助线 1.作半径 2.见弦往往作弦心距 3.见直径往往作直径上的圆周角 4.切点圆心莫忘连 5.两圆相切公切线(连心线) 6.两圆相交公共弦 中考数学九班级学习方法 1、科学的预习方法 预习中发觉的难点,就是听课的重点;对预习中遇到的没有把握好的有关的旧学问,可进行补缺,以减听课过程中的困难;有助于提高思维力量,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习后将课本的例题及老师要讲授的习题提前完成,还可以培育自己的自学力量,与老师的方法进行比较,可以发觉更多的方法与技巧。总之,这样会使你的听课更加有的放矢,你会知道哪些该重点听,哪些该重点记。 2、科学的听课方式 听课的过程不是一个被动参预的过程,要全身心地投入课堂学习,耳到、眼到、心到、口到、手到。还要想在老师前面,不断思索:面对这个问题我会怎么想?当老师讲解时,又要思索:老师为什么这样想?这里用了什么思想方法?这样做的目的是什么?这个题有没有更好的方法?问题多了,思路自然就开阔了。 3、科学的记录笔记 记问题-将课堂上未听懂的问题准时登记来,便于课后请教同学或老师,把问题弄懂弄通。 记疑点-对老师在课堂上讲的内容有疑问应准时登记,这类疑点,有可能是自己理解错造成的,也有可能是老师讲课疏忽大意造成的,登记来后,便于课后与老师商榷。 记方法-勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培育力量,并对提高解题水平大有好处。 记总结-留意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,把握基本概念、公式、定理,查找存在问题、找到规律,融会贯穿课堂内容都很有作用。 中考数学九班级学习技巧 养成良好的学习数学习惯 多质疑、勤思索、好动手、重归纳、留意应用。同学在学习数学的过程中,要把老师所传授的学问翻译成为自己的特别语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、用心上课、准时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 准时了解、把握常用的数学思想和方法 中学数学学习要重点把握的的数学思想有以上几个:集合与对应思想,分类争论思想,数形结合思想,运动思想,转化思想,变换思想。 有了数学思想以后,还要把握详细的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在详细的方法中,常用的有:观看与试验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特别,有限与无限,抽象与概括等。 zs 中考数学九班级学问点