(精品)2014届高考理科数学总复习(第1轮)全国版课件:3.4数列求和(第1课时).ppt
-
资源ID:85524739
资源大小:2.20MB
全文页数:31页
- 资源格式: PPT
下载积分:16金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
(精品)2014届高考理科数学总复习(第1轮)全国版课件:3.4数列求和(第1课时).ppt
1第三章第三章 数列数列第 讲(第一课时)(第一课时)2考考点点搜搜索索常用求和公式常用求和公式错位相减法错位相减法倒序相加法倒序相加法并项求和法并项求和法裂项求和法裂项求和法3高高考考猜猜想想 数数列列求求和和是是对对数数列列知知识识的的精精彩彩演演绎绎,它它几几乎乎涵涵盖盖了了数数列列中中所所有有的的思思想想、策策略略、方方法法、技技巧巧,对对学学生生的的知知识识和和思思维维都都有有很很高高的的训训练练价价值值.考考试试时时把把求求和和作作为为大大题题的的一一个个小小问问单单列列,或或与与极极限相结合,考查数列的求和限相结合,考查数列的求和.一、等差数列与等比数列的求和方法 等差数列的前n项和公式是采用 .推导的,等比数列的前n项和公式是采用 推导的.4倒序相加法倒序相加法错位相减法错位相减法二、常用求和公式 (等差数列)5三、错位相减法这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中an、bn分别是等差数列和等比数列.四、倒序相加法 将一个数列倒过来排列(倒序),当它与原数列相加时,若有公因式可提,并且剩余的项的和易于求得,则这样的数列可用倒序相加法求和.等差数列的求和公式 就是用倒序相加法推导出来的.6五、分组求和法有一类数列,既不是等差数列,也不是等比数列.若将这类数列适当拆开,可分为几个等差、等比或常见的数列,即能分别求和,然后再合并.六、裂项法这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的项分解,然后重新组合,使之能消去一些项,最终达到求和的目的.78七、常见的拆项公式有:1.=.2.=.3.=.4.=.5.nn!=.(n+1)!-n!1.若数列1,1+2,1+2+22,1+2+22+23,,1+2+22+2n-1,的前n项和Sn1020,那么n的最小值是()A.7 B.8 C.9 D.10 9 令an=1+2+22+2n-1=2n-1.则数列an的前n项和即为Sn,故Sn=2n+1-2-n,则2n+1-2-n1020,解得n10.10D2.二次函数y=n(n+1)x2-(2n+1)x+1,当n依次取1,2,3,4,k,时,图象在x轴上截得的线段的长度的总和为()A.1 B.2 C.3 D.4 11 令y=0,则n(n+1)x2-(2n+1)x+1=0,得 或则当n取k时,图象在x轴上截得的线段的长度所以所求线段的长度的总和为 ,故选A.12133.设设Sn=1-2+3-4+(-1)n-1n,则则S17+S33+S50=()A.-1 B.0 C.1 D.2 依题意,依题意,S17=1-2+3-4+17=9,S33=1-2+3-4+31-32+33=17,S50=1-2+3-4+49-50=-25,则则S17+S33+S50=1,故选,故选C.C 题型1:分组求和法141516【点评】:点评:求数列的前n项和,首先要研究数列的通项公式的特点,再确定相应的求和方法如本题中的(1)小题运用分组求和法;(2)小题中,由于an的项是正负相间,故采用并项求和法,但解题中要注意分奇数、偶数讨论17求数列1,a+a2,a2+a3+a4,a3+a4+a5+a6,(a0)的前n项和Sn.18 据题设条件分析可知:据题设条件分析可知:an=an-1+an+an+1+a2n-2,当当a=1时,时,an=n,所以所以当当a1时,时,当a1时,当a=-1时,19题型2:错位相减法求和202.求值:求值:分分a=1和和a1两种情况两种情况.当当a=1时,时,当当a1时,时,将上式两边同乘以将上式两边同乘以 ,得,得 两式相减,得两式相减,得即综上所述,得21【点评】:若和式的项是一个等差数列与一个等比数列的积的形式,就用错位相减法求和.其步骤主要有:先在和式两边乘(或除)以等比数列的公比,然后两式中有n-1项参与错位相减,相减后这n-1项构成一个新的等比数列,然后可求得其和.如果是含参数的等比数列,注意按公比是否为1进行讨论.22已知等比数列an的前n项和为Sn=a2n+b,且a1=3.(1)求a、b的值及数列an的通项公式;(2)设 ,数列bn的前n项和为Tn,证明:Tn23 (1)当n2时,an=Sn-Sn-1=2n-1a.而an为等比数列,得a1=21-1a=a.又a1=3,得a=3.从而an=32n-1(nN*).又因为a1=2a+b=3,所以b=-3.2425(2)证明:证明:因为因为所以所以两式相减得两式相减得则则3.求下列各数列的前n项和Sn.(1)(2)(1)因为所以26题型3:裂项法求和 (2)因为 所以27【点评】:“裂项法”一般适用于分式型求和,和式中的项的结构特点一般是:或 (其中an是公差为d(d0)的等差数列),利用 变形后,一些项相抵消,注意前后各有哪些项保留.2829301.从分析数列的通项公式入手,挖掘数列通项公式的结构特征,并进行联想对比,来选择求和的不同方法.2.对于分子为某一常数,分母是由等差数列的项之积形成的分数数列的求和一般选用裂项相消法.31