欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数学:2422《切线长定理》课件人教版九年级上).ppt

    • 资源ID:85527252       资源大小:455.50KB        全文页数:13页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学:2422《切线长定理》课件人教版九年级上).ppt

    24.2.2直线与圆的位置关系(直线与圆的位置关系(3)切线长定理切线长定理复习复习1、切线的判定定理、切线的判定定理经过半径的外端且垂直于这条半径的直经过半径的外端且垂直于这条半径的直线是圆的切线。线是圆的切线。2、切线的性质归纳、切线的性质归纳如果一条直线符合下列三个条件中的任意两个,那如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件。这三个条件是:么它一定满足第三个条件。这三个条件是:(1)过圆心;过圆心;(2)过切点;过切点;(3)垂直于切线。垂直于切线。BOABOA知二求一知二求一OPAB经过圆外一点作圆的切线,这点和切点之经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做间的线段的长,叫做这点到圆的切线长。这点到圆的切线长。切线长概念切线长概念如右图,线段如右图,线段PA,PB叫做点叫做点P到到 O的切的切线长,对吗?线长,对吗?想一想:想一想:切线和切线长是什么关系?切线和切线长是什么关系?活活 动动 二二如图,纸上有一如图,纸上有一 O,PA为为 O的一条切线,的一条切线,沿着直线沿着直线PO对折,设圆上与点对折,设圆上与点A重合的点为重合的点为B。利用图形轴对称性解释利用图形轴对称性解释3、PA、PB有何关系?有何关系?4、APO和和 BPO有何关系?有何关系?OPAOPABPA=PB APO=BPOOPAB推理论证推理论证已知:从已知:从 O外的一点外的一点P引两条切线引两条切线PA,PB,切点分别是,切点分别是A、B.求证:求证:AP=BP,OPA=OPB证明:连接证明:连接OA,OBPA,PB与与 O相切,相切,点点A,B是切点是切点OAPA,OBPB 即即 OAP=OBP=90 OA=OB,OP=OPRtAOP RtBOP(HL)PA=PB OPA=OPB切线长定理切线长定理 从圆外一点可以引圆的两条切线,它从圆外一点可以引圆的两条切线,它们的们的切线长相等切线长相等,这一点和圆心的连线,这一点和圆心的连线平平分两条切线的夹角分两条切线的夹角。PA、PB分别切分别切 O于于A、BPA=PBOPA=OPB符号语言符号语言:归纳归纳:切线长定理为证明:切线长定理为证明线段相等线段相等、角相等角相等提供新的方法提供新的方法BOPA应用新知应用新知1、判断、判断(1)过一点可以做圆的两条切线。()过一点可以做圆的两条切线。()(2)切线长就是切线的长。()切线长就是切线的长。()2、已知、已知PA、PB与与 O相切相切于点于点A、B,O的半径为的半径为2(1)若四边形)若四边形OAPB的周的周长为长为10,则,则PA=。(2)若)若APB=60,则则PA=。AOB=OPAB322304已知:已知:PAPA、PBPB分别与分别与 O切于点切于点AB,连接,连接AB交交OP于于点点M,那么,那么OPOP除了平分除了平分APBAPB以外,还有什么作用?以外,还有什么作用?请说明理由。请说明理由。(1)OP垂直平分垂直平分AB思考思考APOBM(3)OP平分平分AOB即即 OPAB,AM=BM即即 AOP=BOP(2)OP平分平分ABAMBM即即 =切线长定理为证明切线长定理为证明线段相线段相等,角相等,弧相等,垂等,角相等,弧相等,垂直关系直关系提供了理论依据。提供了理论依据。(3)连结圆心和圆外一点)连结圆心和圆外一点(2)连结两切点)连结两切点(1)分别连接圆心和切点)分别连接圆心和切点在解决有关圆的切线长在解决有关圆的切线长问题时,往往需要我们问题时,往往需要我们构建基本图形。构建基本图形。归纳:作辅助线方法归纳:作辅助线方法APOBM练习:练习:PA、PB是是 O的的两条切线,两条切线,A、B为切点,为切点,直线直线OP交于交于 O于点于点D、E,交,交AB于于C。ABPOCED(1)写出图中所有的垂直关系)写出图中所有的垂直关系OAPA,OB PB,AB OP(2)写出图中所有的全等三角形)写出图中所有的全等三角形AOP BOP,AOC BOC,ACP BCP(3)写出图中所有的等腰三角形)写出图中所有的等腰三角形ABP AOB 例:如图,例:如图,PAPA、PBPB分别分别切切 O O于于A A、B B,CDCD与与O O切于点切于点E E,分别交,分别交PAPA,PBPB于于C C、D D,已知,已知PA=7cmPA=7cm,求,求PCDPCD的的周长周长C OPBDAE证明:证明:PAPA、DCDC为为O O的切线的切线 DA=DE DA=DE (切线长定理切线长定理)同理可证同理可证 CE=CBCE=CB,PA=PBPA=PB又又C CPCDPCD=PD+PC+CD=PD+PC+CD =PD+PC+DE+CE =PD+PC+DE+CE =PA+PB =PA+PB =7+7 =7+7 =14 cm =14 cm 例题例题证明:证明:AL+LB+NC+DN=AP+MB+MC+DPAL+LB+NC+DN=AP+MB+MC+DP 即即 AB+CD=AD+BCAB+CD=AD+BC补充结论:圆的外切四边形的两组对边之和相等补充结论:圆的外切四边形的两组对边之和相等DLMNABCOP练习:练习:如图,四边形如图,四边形ABCDABCD的边的边ABAB、BCBC、CDCD、DADA和和圆圆O O分别相切于点分别相切于点L L、M M、N N、P P求证:求证:AD+BC=AB+CDAD+BC=AB+CDAL=APAL=AP,LB=MB,LB=MB,NC=MC NC=MC,DN=DPDN=DP四边形四边形ABCDABCD的边的边ABAB、BCBC、CDCD、DADA和圆和圆O O分别相切于点分别相切于点L L、M M、N N、P P课堂小结课堂小结1、切线长概念、切线长概念经过圆外一点作圆的切线,这点和切点之间的经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做线段的长,叫做这点到圆的切线长。这点到圆的切线长。2、切线长定理、切线长定理 从圆外一点可以引圆的两条切线,它们的从圆外一点可以引圆的两条切线,它们的切线长相切线长相等等,这一点和圆心的连线,这一点和圆心的连线平分两条切线的夹角平分两条切线的夹角。3 3、切线长定理为证明、切线长定理为证明线段相等,角相等,弧相等,线段相等,角相等,弧相等,垂直关系垂直关系提供了理论依据。提供了理论依据。4、圆的外切四边形的两组对边的和相等、圆的外切四边形的两组对边的和相等总结总结

    注意事项

    本文(数学:2422《切线长定理》课件人教版九年级上).ppt)为本站会员(hwp****526)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开