欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021年中考数学复习题考点25:矩形.pdf

    • 资源ID:85762379       资源大小:967.08KB        全文页数:18页
    • 资源格式: PDF        下载积分:12金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021年中考数学复习题考点25:矩形.pdf

    第 1 页 共 18 页2021 年中考数学复习题:考点25 矩形一选择题(共6 小题)1(遵义)如图,点P 是矩形 ABCD的对角线 AC上一点,过点 P 作 EF BC,分别交 AB,CD于 E、F,连接 PB、PD若 AE=2,PF=8 则图中阴影部分的面积为()A10 B12 C 16 D18【分析】想办法证明SPEB=SPFD解答即可【解答】解:作 PMAD于 M,交 BC于 N则有四边形 AEPM,四边形 DFPM,四边形 CFPN,四边形 BEPN都是矩形,SADC=SABC,SAMP=SAEP,SPBE=SPBN,SPFD=SPDM,SPFC=SPCN,SDFP=SPBE=28=8,S阴=8+8=16,故选:C2(枣庄)如图,在矩形ABCD中,点 E是边 BC的中点,AEBD,垂足为 F,则 tanBDE的值是()ABC D第 2 页 共 18 页【分析】证明 BEF DAF,得出 EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出 EF=DE,设 EF=x,则 DE=3x,由勾股定理求出DF=2x,再由三角函数定义即可得出答案【解答】解:四边形ABCD是矩形,AD=BC,ADBC,点 E是边 BC的中点,BE=BC=AD,BEF DAF,=,EF=AF,EF=AE,点 E是边 BC的中点,由矩形的对称性得:AE=DE,EF=DE,设 EF=x,则 DE=3x,DF=2x,tanBDE=;故选:A3(威海)矩形 ABCD与 CEFG,如图放置,点 B,C,E共线,点 C,D,G共线,连接 AF,取 AF的中点 H,连接 GH 若 BC=EF=2,CD=CE=1,则 GH=()A1 BC D第 3 页 共 18 页【分析】延长 GH交 AD于点 P,先证 APH FGH得 AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案【解答】解:如图,延长GH交 AD于点 P,四边形 ABCD和四边形 CEFG 都是矩形,ADC=ADG=CGF=90 ,AD=BC=2、GF=CE=1,ADGF,GFH=PAH,又H是 AF的中点,AH=FH,在APH和FGH中,APH FGH(ASA),AP=GF=1,GH=PH=PG,PD=AD AP=1,CG=2、CD=1,DG=1,则 GH=PG=,故选:C4(杭州)如图,已知点P 是矩形 ABCD内一点(不含边界),设PAD=1,PBA=2,PCB=3,PDC=4,若 APB=80 ,CPD=50 ,则()第 4 页 共 18 页A(1+4)(2+3)=30 B(2+4)(1+3)=40C(1+2)(3+4)=70 D(1+2)+(3+4)=180【分析】依据矩形的性质以及三角形内角和定理,可得ABC=2+80 1,BCD=3+130 4,再根据矩形 ABCD中,ABC+BCD=180 ,即可得到(1+4)(2+3)=30【解答】解:ADBC,APB=80 ,CBP=APB DAP=80 1,ABC=2+80 1,又 CDP中,DCP=180 CPD CDP=130 4,BCD=3+130 4,又矩形 ABCD中,ABC+BCD=180 ,2+80 1+3+130 4=180,即(1+4)(2+3)=30,故选:A5(聊城)如图,在平面直角坐标系中,矩形OABC的两边 OA,OC分别在 x轴和 y 轴上,并且 OA=5,OC=3 若把矩形 OABC绕着点 O逆时针旋转,使点A恰好落在 BC边上的 A1处,则点 C的对应点 C1的坐标为()第 5 页 共 18 页A(,)B(,)C(,)D(,)【分析】直接利用相似三角形的判定与性质得出ONC1三边关系,再利用勾股定理得出答案【解答】解:过点C1作 C1Nx 轴于点 N,过点 A1作 A1Mx 轴于点 M,由题意可得:C1NO=A1MO=90,1=2=3,则A1OMOC1N,OA=5,OC=3,OA1=5,A1M=3,OM=4,设 NO=3x,则 NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=(负数舍去),则 NO=,NC1=,故点 C的对应点 C1的坐标为:(,)故选:A6(上海)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()第 6 页 共 18 页AA=B BA=C CAC=BD DABBC【分析】由矩形的判定方法即可得出答案【解答】解:A、A=B,A+B=180 ,所以 A=B=90 ,可以判定这个平行四边形为矩形,正确;B、A=C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、ABBC,所以 B=90,可以判定这个平行四边形为矩形,正确;故选:B二填空题(共6 小题)7(金华)如图 2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边 AB,BC上,三角形的边 GD在边 AD上,则的值是【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,=故答案为:8(达州)如图,平面直角坐标系中,矩形OABC的顶点 A(6,0),C(0,第 7 页 共 18 页2)将矩形 OABC绕点 O顺时针方向旋转,使点 A 恰好落在 OB上的点 A1处,则点 B的对应点 B1的坐标为(2,6)【分析】连接 OB1,作 B1HOA 于 H,证明 AOB HB1O,得到 B1H=OA=6,OH=AB=2,得到答案【解答】解:连接OB1,作 B1HOA于 H,由题意得,OA=6,AB=OC 2,则 tanBOA=,BOA=30 ,OBA=60 ,由旋转的性质可知,B1OB=BOA=30 ,B1OH=60 ,在AOB和HB1O,AOB HB1O,B1H=OA=6,OH=AB=2,点 B1的坐标为(2,6),故答案为:(2,6)9(上海)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩第 8 页 共 18 页形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高如图 2,菱形 ABCD的边长为 1,边 AB水平放置如果该菱形的高是宽的,那么它的宽的值是【分析】先根据要求画图,设矩形的宽AF=x,则 CF=x,根据勾股定理列方程可得结论【解答】解:在菱形上建立如图所示的矩形EAFC,设 AF=x,则 CF=x,在 RtCBF中,CB=1,BF=x 1,由勾股定理得:BC2=BF2+CF2,解得:x=或 0(舍),即它的宽的值是,故答案为:10(连云港)如图,E、F,G、H 分别为矩形 ABCD的边 AB、BC、CD、DA 的中点,连接 AC、HE、EC,GA,GF 已知 AGGF,AC=,则 AB的长为2第 9 页 共 18 页【分析】如图,连接 BD 由ADG GCF,设 CF=BF=a,CG=DG=b,可得=,推出=,可得 b=a,在 RtGCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD四边形 ABCD是矩形,ADC=DCB=90 ,AC=BD=,CG=DG,CF=FB,GF=BD=,AG FG,AGF=90 ,DAG+AGD=90,AGD+CGF=90 ,DAG=CGF,ADG GCF,设 CF=BF=a,CG=DG=b,=,=,b2=2a2,a0b0,b=a,在 RtGCF中,3a2=,a=,第 10 页 共 18 页AB=2b=2 故答案为 211(株洲)如图,矩形 ABCD的对角线 AC与 BD相交点 O,AC=10,P、Q 分别为 AO、AD的中点,则 PQ的长度为2.5【分析】根据矩形的性质可得AC=BD=10,BO=DO=BD=5,再根据三角形中位线定理可得 PQ=DO=2.5【解答】解:四边形ABCD是矩形,AC=BD=10,BO=DO=BD,OD=BD=5,点 P、Q 是 AO,AD的中点,PQ是AOD的中位线,PQ=DO=2.5 故答案为:2.512(嘉兴)如图,在矩形ABCD中,AB=4,AD=2,点 E在 CD上,DE=1,点 F是边 AB上一动点,以 EF为斜边作 RtEFP 若点 P在矩形 ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是0 或 1AF或 4【分析】先根据圆周角定理确定点P在以 EF为直径的圆 O 上,且是与矩形 ABCD的交点,先确定特殊点时 AF的长,当 F与 A 和 B 重合时,都有两个直角三角形符第 11 页 共 18 页合条件,即 AF=0或 4,再找O 与 AD和 BC相切时 AF的长,此时 O与矩形边各有一个交点或三个交点,在之间运动过程中符合条件,确定AF的取值【解答】解:EFP是直角三角形,且点P在矩形 ABCD的边上,P是以 EF为直径的圆 O与矩形 ABCD的交点,当 AF=0时,如图 1,此时点 P有两个,一个与D 重合,一个交在边AB上;当 O与 AD 相切时,设与 AD边的切点为 P,如图 2,此时 EFP是直角三角形,点P只有一个,当O与 BC相切时,如图 4,连接 OP,此时构成三个直角三角形,则 OP BC,设 AF=x,则 BF=P1C=4 x,EP1=x1,OP EC,OE=OF,OG=EP1=,O的半径为:OF=OP=,在 RtOGF中,由勾股定理得:OF2=OG2+GF2,解得:x=,当 1AF时,这样的直角三角形恰好有两个,当 AF=4,即 F与 B重合时,这样的直角三角形恰好有两个,如图5,综上所述,则 AF的值是:0 或 1AF或 4故答案为:0 或 1AF或 4第 12 页 共 18 页三解答题(共5 小题)13(张家界)在矩形ABCD中,点 E在 BC上,AE=AD,DFAE,垂足为 F(1)求证 DF=AB;(2)若 FDC=30 ,且 AB=4,求 AD【分析】(1)利用“AAS”证ADF EAB即可得;(2)由 ADF+FDC=90 、DAF+ADF=90 得 FDC=DAF=30 ,据此知AD=2DF,根据 DF=AB可得答案【解答】证明:(1)在矩形 ABCD中,ADBC,AEB=DAF,又DF AE,DFA=90 ,DFA=B,第 13 页 共 18 页又AD=EA,ADF EAB,DF=AB(2)ADF+FDC=90 ,DAF+ADF=90 ,FDC=DAF=30 ,AD=2DF,DF=AB,AD=2AB=8 14(连云港)如图,矩形ABCD中,E是 AD的中点,延长 CE,BA交于点 F,连接 AC,DF(1)求证:四边形 ACDF是平行四边形;(2)当 CF平分 BCD时,写出 BC与 CD的数量关系,并说明理由【分析】(1)利用矩形的性质,即可判定FAE CDE,即可得到 CD=FA,再根据 CDAF,即可得出四边形ACDF是平行四边形;(2)先判定 CDE是等腰直角三角形,可得 CD=DE,再根据 E是 AD的中点,可得 AD=2CD,依据 AD=BC,即可得到 BC=2CD【解答】解:(1)四边形 ABCD是矩形,ABCD,FAE=CDE,E是 AD的中点,AE=DE,又 FEA=CED,FAE CDE,第 14 页 共 18 页CD=FA,又CD AF,四边形 ACDF是平行四边形;(2)BC=2CD 证明:CF平分 BCD,DCE=45 ,CDE=90 ,CDE是等腰直角三角形,CD=DE,E是 AD的中点,AD=2CD,AD=BC,BC=2CD 15如图,在矩形 ABCD中,E是 AB的中点,连接 DE、CE(1)求证:ADE BCE;(2)若 AB=6,AD=4,求 CDE的周长【分析】(1)由全等三角形的判定定理SAS证得结论;(2)由(1)中全等三角形的对应边相等和勾股定理求得线段DE的长度,结合三角形的周长公式解答第 15 页 共 18 页【解答】(1)证明:在矩形 ABCD中,AD=BC,A=B=90 E是 AB的中点,AE=BE 在ADE与BCE中,ADE BCE(SAS);(2)由(1)知:ADE BCE,则 DE=EC 在直角 ADE中,AE=4,AE=AB=3,由勾股定理知,DE=5,CDE的周长=2DE+AD=2DE+AB=2 5+6=1616(沈阳)如图,在菱形ABCD中,对角线 AC与 BD交于点 O过点 C作 BD的平行线,过点 D 作 AC的平行线,两直线相交于点E(1)求证:四边形 OCED是矩形;(2)若 CE=1,DE=2,ABCD的面积是4【分析】(1)欲证明四边形 OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为 90 度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答【解答】(1)证明:四边形 ABCD是菱形,AC BD,COD=90 CE OD,DEOC,四边形 OCED是平行四边形,第 16 页 共 18 页又COD=90 ,平行四边形 OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则 CE=OD=1,DE=OC=2 四边形 ABCD是菱形,AC=2OC=4,BD=2OD=2,菱形 ABCD的面积为:AC?BD=42=4故答案是:417(玉林)如图,在?ABCD 中,DCAD,四个角的平分线AE,DE,BF,CF的交点分别是 E,F,过点 E,F分别作 DC与 AB间的垂线 MM 与 NN,在 DC与AB上的垂足分别是M,N 与 M ,N,连接 EF(1)求证:四边形 EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求 EF的长【分析】(1)要说明四边形EFNM 是矩形,有MECDFNCD 条件,还缺ME=FN 过点 E、F分别作 AD、BC的垂线,垂足分别是G、H利用角平分线上的点到角两边的距离相等可得结论(2)利用平行四边形的性质,证明直角DEA,并求出 AD的长利用全等证明GEA CNF,DMEDGE从而得到 DM=DG,AG=CN,再利用线段的和差关系,求出 MN 的长得结论【解答】解:(1)证明:过点 E、F分别作 AD、BC的垂线,垂足分别是G、H3=4,1=2,EG AD,EMCD,EM AB第 17 页 共 18 页EG=ME,EG=EMEG=ME=ME=MM 同理可证:FH=NF=NF=NN CD AB,MM CD,NN CD,MM=NN ME=NF=EG=FH又MM NN ,MM CD四边形 EFNM是矩形(2)DC AB,CDA+DAB=180 ,2=DAB3+2=90在 RtDEA,AE=4,DE=3,AB=5四边形 ABCD是平行四边形,DAB=DCB,又 2=DAB,5=DCB,2=5由(1)知 GE=NF在 RtGEA和 RtCNF中GEA CNFAG=CN在 RtDME和 RtDGE中DE=DE,ME=EGDMEDGEDG=DM第 18 页 共 18 页DM+CN=DG+AG=AB=5MN=CD DMCN=9 5=4四边形 EFNM是矩形EF=MN=4

    注意事项

    本文(2021年中考数学复习题考点25:矩形.pdf)为本站会员(索****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开