如何写高一数学教学工作计划范文(精)(3篇).docx
-
资源ID:85867302
资源大小:20.32KB
全文页数:10页
- 资源格式: DOCX
下载积分:12金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
如何写高一数学教学工作计划范文(精)(3篇).docx
文本为Word版本,下载可任意编辑如何写高一数学教学工作计划范文(精)(3篇) 光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。相信许多人会觉得计划很难写?以下是我收集整理的工作计划书范文,仅供参考,希望能够帮助到大家。 如何写高一数学教学工作计划范文(精)一 函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。 本节课是普通高中课程标准的新增内容之一,选自普通高中课程标准实验教课书数学i必修本(a版)第9495页的第三章第一课时3。1。1方程的根与函数的的零点。 本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。 总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。 1。结合方程根的几何意义,理解函数零点的定义; 2。结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系; 3。结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法 1。让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值; 2。培养学生锲而不舍的探索精神和严密思考的良好学习习惯; 3。使学生感受学习、探索发现的乐趣与成功感 函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。 发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。 导学案,自主探究,合作学习,电子交互白板。 略 讨论:请大家给方程的一个解的大约范围,看谁找得范围更小? 师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。 生:分组讨论,各抒己见。在探究学习中得到数学能力的提高 一是为用二分法求方程的近似解做准备 二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。 零点概念 零点存在性的判断 零点存在性定理的应用注意点:零点个数判断以及方程根所在区间 我为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。 如何写高一数学教学工作计划范文(精)二 函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。 本节课是普通高中课程标准的新增内容之一,选自普通高中课程标准实验教课书数学i必修本(a版)第9495页的第三章第一课时3。1。1方程的根与函数的的零点。 本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。 总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。 1。结合方程根的几何意义,理解函数零点的定义; 2。结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系; 3。结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法 1。让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值; 2。培养学生锲而不舍的探索精神和严密思考的良好学习习惯; 3。使学生感受学习、探索发现的乐趣与成功感 函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。 发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。 导学案,自主探究,合作学习,电子交互白板。 略 讨论:请大家给方程的一个解的大约范围,看谁找得范围更小? 师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。 生:分组讨论,各抒己见。在探究学习中得到数学能力的提高 一是为用二分法求方程的近似解做准备 二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。 零点概念 零点存在性的判断 零点存在性定理的应用注意点:零点个数判断以及方程根所在区间 我为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。 如何写高一数学教学工作计划范文(精)三 本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。 一、指导思想: 使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。 1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。 2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。 3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。 4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。 5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。 一、教学目标. (一)情意目标 (1)通过分析问题的方法的教学,培养学生的学习的兴趣。 (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组 研究合作学习中学会交流、相互评价,提高学生的合作意识 (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。 (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。 (6)让学生体验“发现挫折矛盾顿悟新的发现”这一科学发现历程法。 (二)能力要求 1、培养学生记忆能力。 (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。 (3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。 2、培养学生的运算能力。 (1)通过概率的训练,培养学生的运算能力。 (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。 (3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。 (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。 (5)利用数形结合,另辟蹊径,提高学生运算能力。 第 10 页 共 10 页