2光学谐振腔.pdf
光学谐振腔 光学谐振腔是常用激光器的三个主要组成部分之一。组成:在简单情况下,它是在激活物质两端适当地放置两个反射镜。目的:就是通过了解谐振腔的特性,来正确设计和使用激光器的谐振腔,使激光器的输出光束特性达到应用的要求。光学谐振腔的理论:近轴光线处理方法的几何光学理论、波动光学的衍射理论 无源腔:又称为非激活腔或被动腔,即无激活介质存在的腔。有源腔(激活腔或主动胺):当腔内充有工作介质并设有能源装置后。一、构成、分类及作用 1、谐振腔的构成和分类 构成:最简单的光学谐振腔是在激光工作物质两端适当位置放置两个镀高反射膜的反射镜。与微波腔相比光频腔的主要特点是:侧面敞开没有光学边界,以抑制振荡模式,并且 它的轴向尺寸(腔长)远大于振荡波长:L ,一般也远大于横向尺寸即反射镜的线度。因此,这类腔为开放式光学谐振腔,简称开腔。开式谐振腔是最重要的结构形式-气体激光器、部分固体激光器谐振腔 2、激光器中常见的谐振腔的形式 1)平行平面镜腔。由两块相距上、平行放置的平面反射镜构成 2)双凹球面镜腔。由两块相距为 L,曲率半径分别为 R1 和 R2 的凹球面反射镜构成 当 R1 R2 L 时,两凹面镜焦点在腔中心处重合,称为对称共焦球面镜腔;当 R1+R2 L 表示两凹面镜曲率中心在腔内重合,称为共心腔。3)平面凹面镜腔。相距为 L 的一块平面反射镜和一块曲率半径为 R 的凹面反射镜构成。当 R 2L 时,这种特殊的平凹腔称为半共焦腔 4)特殊腔。如由凸面反射镜构成的双凸腔、平凸腔、凹凸腔等,在某些特殊激光器中,需使用这类谐振腔 5)其他形状的 3、谐振腔的作用(1)提供光学正反馈作用 谐振腔为腔内光线提供反馈,使光多次通过腔工作物质,不断地被放大,形成往复持续的光频振荡;取决因素:组成腔的两个反射镜面的反射率,反射率越高,反馈能力越强;反射镜的几何形状以及它们之间的组合方式。上述因素的变化会引起光学反馈作用大小的变化,即引起腔内光束能量损耗的变化。(2)对振荡光束的控制作用 主要在方向和频率的限制,其功能为:有效地控制腔内实际振荡的模式数目,使大量的光子集结在少数几个沿轴向、且满足往返一次位相变化为 2 的整数倍的光子状态中,提高了光子简并度,从而获得单色性好、方向性好及相干性强的优异辐射光。控制谐振频率(纵模)。可以直接控制激光束的横向分布特性、光斑大小及光束发散角等。可以改变腔内光束的损耗,在增益一定的情况下能控制激光器的输出功率。二、几何光学分析(光线传输矩阵)1、光线传输矩阵 设有一条光线,在传输过程中偏离 z 轴的距离为 x,传输方向和 z 轴夹角为,光线的空间坐标从(x0,0)变成(x1,1),则两者间关系为 而由光路可逆 光线变换矩阵行列式为 detM=M=AD BC=1/2(1 为入射光所在空间的折射率,2 为出射光线所在空间介质的折射率。)当 1=2 时 detM=AD-BC=1 2、符号规则 为了避免因符号正负引起混乱,对符号的正负规定如下:1)x(光线离轴距离)在光轴上方为正,下方为负;2)(光线与光轴夹角)出射方向指向光轴上方为正,指向下方为负。3)反射镜面曲率半径 R:凸面反射镜 R0。4)折射面曲率半径 R:凸折射面 R0。5)球面波波面曲率半径 R:发散球面波 R 0,会聚球面波 R0。公式中文字符号均为代数量。3、谐振腔的几何参数 R1、R2:两镜面曲率半径,L:腔长 g 参数:g1=1-L/R1 g2=1-L/R2 4、光线变换矩阵 1、定义 T:光线变换矩阵 2、实例 单程传播 L 距离 球面反射镜 两介质的平面界面(即折射定律)球面透镜 当光线在腔内经过 n 次往返后,其参数变换矩阵可表示为 近轴光线在共轴球面腔内的往返传输任意多次,其光线传输矩阵与光线的初始坐标无 三谐振腔的稳定性 1、稳定腔的概念 物理意义 镜面上任一点发出的近轴光线,往返无限次而不逸出 数学意义 Tn 各元素当 n 时,保持有界 2、稳定性条件(证明略)(1)稳定腔 0g1g21 g1g2L,R2L 0g1g21 R1L,R2L 0g1g21 凹凸 R1L,R1+R2L 0g1g2L 0g1g21(2)非稳定 双凹 R1+R21 R1L g1g20 凹凸 R1L g1g21 R10,R2L g1g20 平凹 R1=,R2 L g1g20 双凸 R10,R21 平凸 R 1=,R21 6、稳定性几何判别法 以两块反射镜的曲率半径为直径做相应反射镜面的两个内切圆(对于凸面反射镜为外切圆),圆心均取在轴线上,a.若两圆相交与两点 F 和 F,则谐振腔稳定,b.若两圆不相交,则谐振腔不稳定 c.若两圆重合或相切,则腔是临界腔。P.S.且线段 OF 给定了腰斑 0 的大小。7、谐振腔稳定性小结 对称双凹腔 2 对称凹凸腔(两镜曲率半径大小相等)时稳定 平凹腔 时稳定 双凸腔、双平腔、平凸腔为非稳腔 四、模式激光场的分布 1、光学谐振腔的模式 腔的模式(或称波型):谐振腔内可能存在的电磁场本征态。也是腔内可区分的光子状态,同一模式内的光子、具有完全相同的状态(如频率、偏振和运动方向)。不同的模对应于不同的场分布和振荡频率。光学谐振腔的模式可以分为纵模和横模。模式的决定条件:麦克斯韦方程组&腔的边界条件。模式对腔的结构之间具体依赖关系。根据所选择的几何结构,可以在腔内建立驻波或(和)行波。2、驻波条件(纵模产生机理)-分析均匀平面波在平行平面腔内沿轴线方向的往返传播。当光波在腔镜上反射时,入射波和反射波会发生干涉,为在腔内形成稳定的振荡,要求光波因干涉而得到加强。相长干涉的条件是:光波在腔内沿轴线方向传播一周,驻波条件 A A B 所产生的相位差 为 2 的整数倍。只有某些特定频率的光才能满足谐振条件:=q2(q 为整数)设腔内均匀介质折射率为,腔长为 L(几何长度):光波在腔内轴线方向来回一周经历的光学长度:2L2L。由程差和相差间的关系式得到相位改变量为 因为左右两式是等价的,所以,激光器中满足谐振条件的不同纵模对应着谐振腔内各种不同的稳定驻波场。3、纵模:特点:在腔的横截面内场是均匀分布的,沿腔的轴线方向形成驻波,驻波的波节数由 q决定。激光的纵模(或轴模):由 q 整数所表征的腔内纵向的稳定驻波场。纵模的序数:q;不同的纵模相应于同的 q 值,对应不同的频率 q。纵模的频率间隔:腔内两个相邻纵模频率之差 q=q+1-q=c/2L 很重要!显然,q与 q 无关,对于一定的光腔为常数,因此而腔的纵模在频率尺度上是等距离排列的,如下图所示,其中每一个纵模均有一定的谱线宽度 c。对于腔长 L 10 厘米的 He-Ne 气体激光器,设 1,则 可得 q 1.5 109Hz;对腔长 L 30 厘米的 He-Ne 气体激光器,q 0.5 109Hz。由于普通的 Ne 原子辉光放电中,其中心频率 4.74 1014 s(波长为 632.8nm)的荧光光谱线宽 1.5 109Hz。但在光学谐振腔中允许的谐振频率是一系列分列的频率,其中只有满足谐振条件,同时又满足阈值条件,且落在 Ne 原子 632.8nm 荧光线宽范围内的频率成分才能形成激光振荡。因此l0cm 腔长的 He-Ne 激光器只能出现一种频率的激光。通常称为只有一个纵模振荡。这种激光器称为单频(或单纵模)激光器。而腔长 30cm 的 He-Ne 激光器则可能出现三种频率的激光,也就是可能出现三个纵模。这种激光器称为多频(或多纵模)激光器。激光器中出现的纵模数与下列两个因素有关:A.工作粒子自发辐射的荧光线宽 B.谐振腔的长度 4、横模 1.横模:谐振腔内所允许的,在腔内来回反射能保持稳定不变的,垂直于光传播方向,横截面上电磁场的分布形态。2.横模的本质:电磁场振幅在空间垂直于传播方向上的分布(也即光强在横截面内的分布)。不同的横模对应于不同横向稳定的光场分布和频率。3.横模标记:TEMmnq:方形镜(轴对称),m:x 方向上的节线数目 n:y 方向上的节线数目 TEMplq:圆形镜(旋转对称),p:径向节线数,即暗环数,L:角向节线数,即暗直径数。q 为纵模的序数:即纵向驻波波节数目,一般为 104-107量级,通常不写出来。横模的分类:1)按照横模的阶数来分:基(横)模 TEM00q(m=0,n=0)高阶横模 模的振幅的节点数为零 镜面上出现场振幅的节线 场集中分布在反射镜中心 场分布的“重心”靠近镜的边缘 2)按照对称性来分:轴对称(方形镜)模 旋转对称(圆形镜)模 以 x(或 y)轴为对称轴 以中心为轴心 通常实际上常出现轴对称,可能是由于增益介质不均匀或腔内插入元件破坏了旋转对称的缘故。4.横模的形成机理 自再现模或横模:经过足够多次的往返传播之后,腔内形成这样一种稳态场,它的相对分布不再受衍射影响,它在腔内往返一次后能够“自再现”出发时的场分布。这种稳态场经一次往返后唯一可能的变化,仅是镜面上各点的场振幅按同样的比例衰减,各点的相位发生同样大小的滞后。这种在腔反射镜面上经过一次往返传播后能“自再现”的稳定场分布称为在实际情况中,谐振腔的截面是受腔中的其它光阑所限制如气体激光器,放电管孔径就是谐振腔的限制孔。为了形象地理解开腔中自再现模的形成过程,把平行平面谐振腔中光波来回反射的传播过程,等效于光波在光阑传输线中的传播。这种光阑传输线如下图所示,它由一系列间距为 L、直径为 2a 的同轴孔径构成,这些孔径开在平行放置无限大、完全吸收的屏上。5、激光模式的测量方法 1)横模的测量方法:不同横模的光强在横截面上有不同的分布。对连续可见波段的激光器,只须在光路中放置一个光屏,即可观察激光的横模光斑形状,可粗略地给以判别;或者利用拍照的方法,小孔或刀口扫描方法也可直接扫描出激光束的强度分布从而确定激光横模的分布形状。2)纵模的测量方法:法布里-珀洛(F-P)扫描干涉仪(差别在于用球面镜来代替平面镜)上图所示的是由两块共焦 五、损耗、Q 值及线宽 1、光学谐振腔的损耗,Q 值及线宽 光腔的损耗决定了振荡的阈值和激光的输出能量(1)几何损耗:光线在腔内往返传播时,可能从腔的侧面偏折出去而引起损耗。决定其大小的因素:腔的类型和几何尺寸;横模的高低阶次(2)衍射损耗:腔镜边缘、插入光学元件的边缘、孔径及光阑的衍射效应产生的损耗。决定其大小的因素:腔的菲涅耳数有关(N=a2/L 为菲涅耳数。上述要求变为 Nn,即 N表示最大往返数)、腔的几何参数有关、横模的阶数有关。(阶次越高,衍射损耗越大,基模的衍射损耗最小。)(3)腔镜不完全反射引起的损耗 包括反射镜的吸收、散射以及镜的透射损耗。镜的透射损耗与输出镜的透射率 T 有关。(4)材料中非激活吸收、散射,腔内插入物引起的损耗。激光通过腔内光学元件和反射镜发生非激活吸收、散射引起的损耗 2、平均单程损耗因子 3、光子的平均寿命 R 定义:腔内光强衰减为初始值的 1/e 所需要的时间 腔损耗越大,则越小,腔内光强衰减越快。4、无源腔的 Q 值 品质因数 Q 的定义:则腔内光能的衰减规律为:W=W0e-2vt/Q 腔的品质因数 Q 值是衡量腔质量的一个重要的物理量,它表征腔的储能及损耗特征。5、无源腔的线宽 总之,腔平均单程损耗因子、光子寿命、与腔的品质因数三个物理量之间是关联的,腔平均单程损耗因子越小,光子寿命越长,腔的品质因数越高。六、衍射理论分析 1、几何光学分析方法和衍射理论分析方法 几何光学分析方法:用矩阵方法处理光腔中光线的传播、腔的稳定性、谐振腔的分类等。衍射理论分析方法:在菲涅耳基尔霍夫衍射积分以及模式重现概念的基础上,讨论谐振腔模式的形式、解的存在、模式花样、衍射损耗等。惠更斯菲涅耳原理 它是研究光衍射现象的基础,也是开腔模式问题的理论基础 媒质中波动传到的各点都可以看作是新的次波源,这些新波源发射的波称为子波,其后任一时刻这些子波的包络面就是该时刻的新波阵面。2、波的反射和折射 菲涅耳基尔霍夫衍射积分 空间曲面上光波场的振幅和相位分布函数为 u(x,y),所要考察的空间任意一点 P(x,y)所产生的场为 u(x,y),使用菲涅耳基尔霍夫积分公式有如下一些假定:1.不计及光波的偏振特性;腔长比镜面线度大得多,u(x,y)在腔内传播方向与光轴偏离尺寸不大,腔的曲率半径也比较大,即:(1+cos)/2/L 2.腔面的线度比波长大得多,被积函数中的指数因子 eik一般不能用代替 eikL;3.腔内的振动衰减是缓慢的.将菲涅耳基尔霍夫积分公式应用到开腔的两个镜面上的场,则:经过 q 次渡越后所形成的场 与产生它的场 之间满足类似的迭代关系:根据上述假定,则:考虑对称腔镜的情况。实现模自再现应满足如下关系:是一个表示振幅衰减和相位移动的复常数因子 共振开腔模式的积分方程:方程(1)是开腔自再现模满足的积分方程式,其中函数 E 称为本征函数,常数 称为本征值。它的模描述镜面上场的振幅分布,幅角描述镜面上场的相位分布。复常数 的物理意义 3、平行平面腔 Fox-Li 数值迭代法(1)平行平面腔的优点和缺点:优点是:光束方向性好,模体积大,容易获得单模模振荡,缺点是:谐振腔调整精度要求高,衍射损耗和几何损耗都比较大,其稳定性介于稳定腔与非稳定腔之间 不适用于小增益器件,在中等以上功率的激光器中仍普遍应用。(2)Fox-Li 数值迭代法 谐振腔的迭代解法的思路:1.假设在某一镜面上存在一个初始场分布,将它代入迭代公式,计算在腔内经第一次渡越而在第二个镜面上生成的场;2.利用 1 所得到的 代入迭代公式,计算在腔内经第二次渡越而在第一个镜上生成的场;3.如此反复运算多次后,观察是否形成稳态场分布;谐振腔内描述场渡越的迭代公式,表示为: