初中数学教案全等三角形.pdf
初中数学教案:全等三角形 初中数学教案:全等三角形(通用 10 篇)作为一位不辞辛劳的人民教师,总不可避免地需要编写教案,编写教案助于积累教学经验,不断提高教学质量。那么教案应该怎么写才合适呢?以下是店铺整理的初中数学教案:全等三角形,仅供参考,希望能够帮助到大家。初中数学教案:全等三角形 篇 1 课题:全等三角形 教学目标:1、知识目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能熟练找出两个全等三角形的对应角、对应边。2、能力目标:(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;(2)通过找出全等三角形的对应元素,培养学生的识图能力。3、情感目标:(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。教学重点:全等三角形的性质。教学难点:找全等三角形的对应边、对应角 教学用具:直尺、微机 教学方法:自学辅导式 教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发现这两个三角形有什么美妙的关系吗?一般学生都能发现这两个三角形是完全重合的。(2)学生自己动手 画一个三角形:边长为 4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。(3)获取概念 让学生用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。2、全等三角形性质的发现:(1)电脑动画显示:问题:对应边、对应角有何关系?由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、ADBC,且 ADBC 分析:由于两个三角形完全重合,故面积、周长相等。至于 D,因为 AD 和 BC 是对应边,因此 ADBC。C 符合题意。说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来 说明:根据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。说明:利用“运动法”来找 翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素 旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素 平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素 求证:AECF 分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质对应角相等 AECF 说明:解此题的关键是找准对应角,可以用平移法。分析:AB 不是全等三角形的对应边,但它通过对应边转化为 ABCD,而使 AB+CDADBC 可利用已知的 AD 与 BC 求得。说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。(2)题目的解决 这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:投影显示:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角角)是对应边(或对应角)4、课堂独立练习,巩固提高 此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。5、小结:(1)如何找全等三角形的对应边、对应角(基本方法)(2)全等三角形的性质(3)性质的应用 让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。6、布置作业 a.书面作业 P552、3、4 b.上交作业(中考题)今天的内容就介绍到这里了。初中数学教案:全等三角形 篇 2 教材分析:三角形全等复习课内容选用义务教育课程标准实验教材数学(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过同学们画图、讨论、交流、比较得出,注重同学们实际操作能力,为培养同学们参与意识和创新意识提供了机会。设计理念:针对教材内容和初三同学们的实际情况,组织同学们通过摆拼全等三角形和探求全等三角形的活动,让同学们感悟到图形全等与平移、旋转、对称之间的关系,并通过同学们动手操作,让同学们掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。教学目标:1、通过全等三角形的概念和识别方法的复习,让同学们体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。2、培养同学们观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。3、在同学们操作过程中,激发同学们学习的兴趣,培养同学们主动探索,敢于实践的精神,培养同学们之间合作交流的习惯。教学的重点和难点:重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。难点:运用全等三角形知识来解决实际问题。教学过程设计:一、创设问题情境:某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)师:请同学们先独立思考,然后小组交流意见 生:师:上述问题实质是判断三角形全等需要什么条件的问题。今天我们这节课来复习全等三角形。(引出课题)。师:识别三角形及等的方法有哪些?生:SAS、SSS、ASA、AAS、HL。复习回顾:练习 1、将两根钢条 AA/、BB/中点 O 连在一起,使AA/、BB/绕着点 O 自由转动,做成一个测量工具,则 A/B/的长等于内槽宽 AB,判定OABOA/B/现由()练习 2、已知 AB/DE,且 AB=DE,(1)请你只添加一个条件,使ABCDEF,你添加的条件是(2)添加条件后,证明ABCDEF?根据不同的添加条件,要求同学们能够叙述三角形全等的条件和全等的现由,鼓励同学们大胆的表述意见 二、探求新知:师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?请同组合作,交流,并把有代表性的摆放进行投影。熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒同学们注意两个全等三角形的对应边和对应角。同学们的摆放形式很多,包括那些平时数学成绩不好的同学们也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。例 1、一张矩形纸片沿着对角线剪开,得到两张三角形纸片 ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N 为其他直线的交点。(1)求证:ABED(2)若 PB=BC,请找出右图中全等三角形,并给予证明。用多媒体演示图形的变化过程。师:图 3 中 AB 与 ED 有怎样的位置关系?同同学们猜想一下结果。生甲:AB 垂直 ED 师:为什么?可以从几方面来考虑?生乙:可以从图形运动变化的过程来考虑 生丙:可以考虑全等在已知条件下,显然有ABCDEF,故A=D,又 ANP=DNC,所 以,APN=DCN=900,即ABED。(根据同学们的回答,教师板演)师:若 PB=BC,找出右图中全等三角形,看看谁能找得最快?生丁:PBDCBA(ASA)师:板演,由 ABED,可得到BPD=900,BPD=CBA,A=D,PB=BC,故有PBDCBA(ASA)。师:还有其他三角形全等吗?生:有,我连接 BN,由勾股定理得 PN=CN,就不难得到APNDCN。(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励同学们大胆的猜想,努力探求,在同学们的叙述过程中,教师及时纠正同学们叙述中的错误,训练同学们严谨的学习态度和学习习惯。)例 2、(动手画)(1)已知 OP 为AOB 平分线,请你利用该图画一对以 OP 所在直线为对称轴的全等三角形。教师在黑板上画好AOB 和直线 OP,同学们独立思考,然后请几个同学们在黑板上演示。师生总结:想要画出符合条件的三角形,只要在射线 OA、OB 上找到一对关于 OP 对称的点就可以了。(2)利用上图作全等三角形方法,在ABC 中,B=600,ABC是直角,AD、CE 是BAC,DCA 的平分线,AD、CE 相交于 F,请判断 FE 与 FD 间数量关系。师:请同学们用三角尺和量角器准确画出此图,然后量出 EF、FD的长度,看看 EF 与 FD 长度 关系如何?生:基本相等。生:长度相等。师:如何来证明他们相等?注意审题。同学们先独立思考后,组内交流,等到有同学举手发言。生:在 AC 上取点 H,使 AH=AE,则AEFAHF 则 EF=FH 师:为什么要这么做?你是怎么想到的?生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又 AD 是平分线,在 AC 上找出 E 关于 AD 有对称点 H 得到AEFAHF。师:这样只能得到 EF=FH。生:再证明FHCFDC。生:先 求 出AD、CE是 角 平 分 线 APC=1200,则DPC=EPA=APH=600,所以HPC=DPC=600,PC=PC,3=4,因为HCPDCP(ASA)所以PD=PH。(看清题意,猜想结果是解决探究题的重要环节,教师要留给同学们一定思考时间,同时鼓励同学们尝试和交流,鼓励同学们勇于探索以及同学之间的合作。)师生共同小结:1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。2、在错综复杂的几何图形中能够寻找全等三角形。3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。4、运用全等三角形的识别法可以解决很多生活实际问题。作业:1、在例 2 中,如果ACB 不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。2、书本课后复习题 教学反思:本教学设计从以下三方面考虑:1、根据同学们的学习情况,改进同学们的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为同学们创设自主探索的氛围,让同学们真正成为课堂主体。2、重视对同学们能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养同学们观察、操作、测试、思考的能力,同学们的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新 3、重视对同学们学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在同学们叙述中纠正同学们的错误,是培养同学们养成良好的习惯之一,同时同学们学习习惯多方面的,在合作交流中,培养同学们合作意识和合作习惯培养显得尤为重要。初中数学教案:全等三角形 篇 3【教学目标】1、使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;2、继续培养学生画图、实 验,发现新知识的能力。【重点难点】1、难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;2、重点:灵活运用 SSS 判定两个三角形是否全等。【教学过程】一、创设问题情境,引入新课 请问同学,老师在黑板上画得两个三角形,ABC 与 全等吗?你是如何判定的。(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等。)上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全 等。满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究。二、实践探索,总结规律 1、问题 1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段,分别为,你能画出这个三角形吗?先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤。步骤:(1)画一线段 AB 使 它的长度等于 c(4.8cm)。(2)以点 A 为圆心,以线段 b(3cm)的长为半径画圆弧;以点 B为圆心,以线段 a(4cm)的长为半径画圆弧;两弧交于点 C.(3)连结 AC、BC ABC 即为所求 把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?换三条线段,再试试看,是否有同样的 结论 请你结合画图、对比,说说你发现了什么?同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的。这样我们就得到判定三角形全等的一种简便 的方法:如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等。简写为边边边,或简记为(S.S.S.)。2、问题 2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为 1 时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形。)3、问题 3、你用这个 SSS 三角形全等的判定法解释三角形具有稳定性吗?(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)4、范例:例 1 如图 19.2.2,四边形 ABCD 中,AD=BC,AB=DC,试说明ABCCDA.解:已知 AD=BC,AB=DC,又因为 AC 是公共边,由(S.S.S.)全等判定法,可知 ABCCDA 5、练习:6、试一试:已知一个三角形的三个内 角分别为、,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?(所画出的三角形都是相似的,但大小不一定相 同)。三个对应角相等的两个三角形不一定全等。三、加强练习,巩固知识 1、如图,ABCDCB 全等吗?为什么?2、如图,AD 是ABC 的中线,。与 相等吗?请说明理由。四、小结 本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用(SSS)来判定三角形全等。三个角对应相等的两个三角不一定会全等。五、作业 初中数学教案:全等三角形 篇 4 教材分析 利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。学情分析 学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。教学目标(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。教学重点和难点 重点:三角形全等条件的探索过程是本节课的重点。从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。教学过程 一、回顾概念整合知识以提问的方式引出本节课的教学内容:问题通过调查你对商品的标价、售价、进价和利润、利润率这些概念清楚了吗?你能列出它们之间的关系式吗?(学生板书写出三个基本关系式)教师引导得出变形关系式:利润进价 x 利润率 设计意图通过调查使学生对商品销售过程所涉及的基本量、基本关系式有初步的了解,为后续的学习作好铺垫 二、强化练习巩固概念 问题运用基本关系式来做一组练习 如果足球的进价是每个元,超市按进价提高后标价,则标价是多少元?如果足球的进价是每个元,标价是每个元,现 7 折优惠,则每个足球的利润是多少元?如果足球的进价是每个元,卖出后盈利,则每个足球的利润是多少?如果足球的进价是每个元,卖出后亏损,则每个足球的利润是多少?设计意图通过题组练习使学生熟练掌握进价、标价、利润、利润率之间的关系,进而促使学生理解概念 三、实践应用合作交流 问题解决调查编写的商品销售方面的有关问题 设计意图通过让学生编题互问互检,学生间的相互评价,拓展学生思维,给学生创造一个合作交流和表现发挥的舞台,让学生充分体验成功后的喜悦.四、联系实际探究新知 问题某商店在某一时间以每件元的价格卖出两件衣服,其中一件盈利,另一件亏损,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?教师在学生独立思考几分钟后让学生估算并简单说出估算的理由,估算对否不给予评判,告诉学生估算对不对还要进行计算。如何计算学生先独立思考,然后同桌交流,最后请一名同学到黑板板演利用一元一次方程解决此实际问题全部过程,其他同学在底下完成。完成后同学间相互评价。最后教师指出解决问题的关键寻找等量关系,教师再进一步用估算方法分析亏损的原因。设计意图在学生基本掌握解决有关商品销售问题的基础上对所学内容进行拓展,延伸。设计开放性问题的目的是通过本题的讲解使学生灵活运用本节的知识解决生活中的实际问题,也使全体学生在获得必要发展的前题下,不同的学生获得不同的体验。五、巩固练习当堂反馈 问题若某商品因库存积压,准备打折出售,如果按定价的7.5折出售将赔元,而按定价的 9 折出售将赚元。该商品定价是多少元?(同学们思考后各自独立完成,然后同学互判)设计意图本节课对学生来说是一个难点,因此设计反馈这一环节很有必要,便于教师掌握学生学习的情况。六、布置作业课后延伸 设计意图加深学生对知识的巩固;是课堂教学内容的延 初中数学教案:全等三角形 篇 5 教学目标 一、知识与技能 1、了解全等形和全等三角形的概念,掌握全等三角形的性质。2、能正确表示两个全等三角形,能找出全等三角形的对应元素。二、过程与方法 通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。三、情感态度与价值观 通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。教学重点 1、全等三角形的性质。2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。教学难点 正确寻找全等三角形的对应元素。教学关键 通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。课前准备:教师课件、三角板、一对全等三角形硬纸版学生白纸一张、硬纸三角形一个 教学过程设计 一、全等形和全等三角形的概念(一)导课:教师(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。(二)全等形的定义 象这样的图片,形状和大小都相同。你还能说一说自己身边还有哪些形状和大小都相同的图形吗?学生举例,集体评析 动手操作 1在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?板书:能够完全重合 命名:给这样的图形起个名称全等形。板书:全等形 刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。(三)全等三角形的定义 动手操作 2制作一个和自己手里的三角形能够完全重合的三角形。定义全等三角形:能够完全重合的两个三角形,叫全等三角形。(四)出示学习目标 1、知道什么是全等形,什么是全等三角形。2、能够找出全等三角形的对应元素。3、会正确表示两个全等三角形。4、掌握全等三角形的性质。二、全等三角形的对应元素及表示(一)自学课本:第1节内容(时间5分钟)可以在小组内交流。(二)检测:1、动手操作 以课本 P91 页的思考的操作步骤,抽三个学生上黑板完成(即把三角形平移、翻折、旋转后得到新的三角形)思考:把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。2、全等三角形中的对应元素(以黑板上的图形为例,图一、图二、三学生独立找,集体交流)(1)对应的顶点(三个)重合的顶点(2)对应边(三条)重合的边(3)对应角(三个)重合的角 归纳:方法一:全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。3、用符号表示全等三角形 抽学生表示图一、图二、三的全等三角形。4、全等三角形的性质 思考:全等三角形的对应边、对应角有什么关系?为什么?归纳:全等三角形的对应边相等、对应角相等。请写出平移、翻折后两个全等三角形中相等的角,相等的边。初中数学教案:全等三角形 篇 6 教学目标:1、知识目标:(1)熟记边角边公理的内容;(2)能应用边角边公理证明两个三角形全等。2、能力目标:(1)通过“边角边”公理的运用,提高学生的逻辑思维能力;(2)通过观察几何图形,培养学生的识图能力。3、情感目标:(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。教学重点:学会运用公理证明两个三角形全等。教学难点:在较复杂的图形中,找出证明两个三角形全等的条件。教学用具:直尺、微机 教学方法:自学辅导式 教学过程:1、公理的发现(1)画图:(投影显示)教师点拨,学生边学边画图。(2)实验 让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)这里一定要让学生动手操作。(3)公理 启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)作用:是证明两个三角形全等的依据之一。应用格式:强调:1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看。3、平面几何中常要证明角相等和线段相等,其证明常用方法:证角相等对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地。证线段相等的方法中点定义;全等三角形的对应边相等;等式性质。2、公理的应用(1)讲解例 1。学生分析完成,教师注重完成后的总结。分析:(设问程序)“SAS”的三个条件是什么?已知条件给出了几个?由图形可以得到几个条件?解:(略)(2)讲解例 2 投影例 2:例 2 如图 2,AECF,ADBC,ADCB,求证:学生思考、分析,适当点拨,找学生代表口述证明思路 让学生在练习本上定出证明,一名学生板书。教师强调 证明格式:用大括号写出公理的三个条件,最后写出 结论。(3)讲解例 3(投影)证明:(略)学生分析思路,写出证明过程。(投影展示学生的作业,教师点评)(4)讲解例 4(投影)证明:(略)学生口述过程。投影展示证明过程。教师强调证明线段相等的几种常见方法。(5)讲解例 5(投影)证明:(略)学生思考、分析、讨论,教师巡视,适当参与讨论。师生共同讨论后,让学生口述证明思路。教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。3、课堂小结:(1)判定三角形全等的方法:SAS(2)公理应用的书写格式(3)证明线段、角相等常见的方法有哪些?让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。6、布置作业 a、书面作业 P566、7 b、上交作业 P57B 组 1 初中数学教案:全等三角形 篇 7 一、教学内容分析 本节课选自北师大版七年级数学下册第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。二、学生学习情况分析 学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。三、设计思想 我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。遵循启发式教学原则,采用引探式教学方法。用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。四、教学目标 1知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。2过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。3情感与态度价值观目标:通过探索活动,体验数学知识在现实生活中的广泛应用,培养学生勇于探索、敢于创新的精神。五、教学重点和难点 重点:三角形全等条件的探索过程和三角形全等的“边边边”条件。难点:三角形全等条件的探索中的分类思想的渗透。六、教学过程设计 具体设计的教学过程描述如下:(一)创设情境,提出问题 1出示多媒体:大家来看一个问题:这是一块三角形玻璃窗,里面的玻璃“啪”地一声损坏了,现在要打电话给玻璃店的老板配一块与损坏的玻璃大小相等形状相同的三角形玻璃,至少要报给玻璃店的老板(这块破裂三角形玻璃)几个数据呢?学情预设学生考虑情况和条件多,大多围绕角和边进行分析。设计意图通过问题情境的创设,不但引入了本课的课题,而且激发了学生的好奇心和求知欲,调动了学生的学习积极性,使他们体会探索的过程是为了解决问题的实际需要。联系生活,充分调动学生的积极性(让学生动起来)。(二)探索发现,合作交流 1.一个条件 按照三角形“边、角”元素进行分类,师生共同归纳得出:一个条件:一边,一角;再按以上分类顺序动脑、动手操作验证。2.验证过程可采取以下方式:画一画:按照下面给出的一个条件各画出一个三角形。三角形的一条边长是 8cm;三角形的一个角为 60。剪一剪:把所画的三角形分别剪下来。比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。对只给一个条件画三角形,画出的三角形一定全等吗?同组同学互相比较,观察得出结果。小组代表说明本小组的结论。再结合展示幻灯片。以便强化结论。教师收集学生的作品,加以比较,得出结论:只给出一个条件时,不能保证所画出的三角形一定全等。3.二个条件 继续探索二个条件的情况,师生共同归纳得出:两个条件:二边,一边一角,二角;教师活动教师积极帮助学生分析、归纳,对学生在分类中出现的问题,教师予以有序的引导。重点抓住“边”按“边”由多到少的顺序给出。设计意图因为初一学生缺乏思维的严谨性,不能对问题做出全面、正确的分析,并对各种情况进行讨论,所以教师设计上述问题,逐步引导学生归纳出三种情况,分别进行研究,向学生渗透分类讨论的思想。从一个,两个到三个条件。培养学生思维的主动性和广阔性。很自然的突破难点。4.画一画:按照下面给出的两个条件各画出一个三角形。三角形的两条边分别是:8cm,10cm;三角形一条边为 7cm,一个角为 30;三角形的两个角分别是:30,50。剪一剪:把所画的三角形分别剪下来。比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。学情预设学生按条件画三角形,然后将所画的三角形分别剪下来,把同一条件下画出的三角形与其他同学画的比一比。教师活动在此教师给学生留出充分的时间画图、观察、比较、交流,然后教师收集学生的作品,加以比较,为学生顺利探索出结论创造条件。5.学生展示本小组的结论 设计意图培养学生的合作意识调动学生的主观能动性,使学生积极主动地参与教学活动,使学生对只有两个条件得不到三角形全等有更直观的认识。知识链接这一知识点既是对后续归纳总结起到实验性证明。6.教师同时展示幻灯片,加以比较说明,得出结论:只给出两个条件时,不能保证所画出的三角形一定全等。设计意图从实践操作中,引发总结,将前面画图的结果升华成理论,让学生学会思考,善于思考。参与构建对知识的形成和体验。7.继续探索三个条件的情况,师生共同归纳得出:三个条件:三边,两边一角,一边两角,三角 再继续探索三个条件中的三条边的情况。8.画一画:在硬纸板上画出三条边分别是 10cm,12cm,14cm 的三角形。(对画图有困难的同学提示:用长度分别为 10cm、12cm、14cm小棒拼一个三角形并在硬纸板上画出)剪一剪:用剪刀剪下画出的三角形,与周围同学比较一下,你们所剪下的三角形是否都全等。比一比:作出的三角形与其他同学作的比一比,是否全等。9.全班几十个三角形摞在讲台上,形成一个高高的三棱柱模型。学生看着讲台上的三棱柱,心中充满了自豪。学情预设 全班几十个三角形摞在讲台上,形成了一个高高的三棱柱。学生看着讲台上的三棱柱,心中充满了自豪。设计意图培养学生的合作意识、创造性思维,合理猜想,为得出SSS 来进行三角形全等的验证作了铺垫。深入探索使学生积极主动地参与教学活动,使学生更利于理解 SSS。很自然的突出重点。(三)、归纳结论,解决问题 1.从上面的活动中,我们总结出:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”学生由理解上升到口述出原理,以便以后更好的运用到实践中去。学情预设学生口述,从口头表达上升到书面表达。对学生的回答是否正确全面,都要给予肯定和鼓励,更好的促进他们学习的积极性。2.成功的解决了上面提出的玻璃问题。我们只要报给玻璃店的老板三条边长就可以配一块与损坏的玻璃大小相等形状相同的三角形玻璃。(三条边就可以做出一模一样的三角形玻璃)为学生继续探索三个条件的其他情况,铺下了好的问题情境。(对于两边一角,一边两角和三个角,我们将下一节课研究)设计意图学以致用,发现问题解决问题。初中数学教案:全等三角形 篇 8 一、教材分析(一)本节内容在教材中的地位与作用。对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节探索三角形全等的条件是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,人教版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。(二)教学目标 在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。(3)培养学生勇于探索、团结协作的精神。(三)教材重难点 由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。二、教法选择与学法指导 本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。三、教学流程(一)创设情景,激发求知欲望 首先,我出示一个实际问题:问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这 6 个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以和毛毛一起来攻克这个难题呢?这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。(二)引导活动,揭示知识产生过程 数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。教师提出 3 个角不能判定两三角形全等,实质我们已经讨论过了。明确今天的任务:讨论两条边一个角是否可以判定两三角形全等。师生再共同探讨两边一角又分为两边一夹角与两边一对角两种情况。活动四:讨论第一种情况:各小组每人用一张长方形纸剪一个直角三角形(只用直尺和剪刀),怎样才能使各小